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Introduction 
– ee, ep, pp processes
– What is a jet 
– Jet algorithms
Jet Characteristics
– Jet energy profile
– Differences between Quark and Gluon jets
– Color coherence effects
Jet Production at Tevatron
– Challenges with jets
– Inclusive jet cross sections
Outlook



Nikos Varelas                                CTEQ Summer School 2005 3

QCD in a Nutshell

Similar to QED BUT Different
Pointlike particles called quarks
Six different “flavors” (u, d, c, s, t, b)
Quarks carry “color” - analogous to electric charge
There are three types of color (red, blue, green)
Mediating boson is called gluon - analogous to photon
Color charge is conserved in quark-quark-gluon vertex
Gluons carry two color “charges” and can interact to 
each other – very important difference from QED -
from Abelian to non-Abelian theory
At large distances: parton interactions become large 
(confinement)
At small distances: parton interactions become small 
(asymptotic freedom)

u

d

u

Proton

gluons

quarks

Partons = quarks & gluons

Coupling constant → αs (analogous to α in QED)
Free particles (hadrons) are colorless

QCD : Theory of Strong
Interactions
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The “Running” αs
SU(3) gauge coupling constant (αS) varies with Q2, decreasing as Q2

increases:

Measurements of the strong coupling are made 
in many processes at different Q2, clearly 
establishing the running of αS.

Asymptotic freedom (αS 0 as Q2        )  
Infrared slavery (αS as Q2     0) 

→
→ ∞
→

→
∞

Compilation of many experiments

Increase of αS as Q2 −> 0 means that color force becomes 
extremely strong when a quark or gluon tries to separate 
from the region of interaction (large distance ~ small Q2).

A quark cannot emerge freely, but is “clothed” with color-
compensating quark-antiquark pairs.   

Leading-Log Approximation
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No free quarks or gluons only jets
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QCD in e+e− Annihilations

Perturbative phase
αs<1 (Parton Level)

Non-perturbative phase
αs≥1 (Hadron Level)

LEP:  88 GeV < Ecm < 209 GeV

e+e− −> (Z0/γ)* −> hadrons
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Fixed Order QCD

SLC:      Ecm = 91 GeV
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Why do we Study Jets in e+e− ?

QCD Studies
Measurements of αs
Fragmentation functions
Color/spin dynamics
Quark-gluon jet properties
Event shape variables (sphericity, 
thrust, …)

Searches for the Higgs
Searches for new physics
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e+e− Event Displays

e+e− −> µ+µ− e+e− −> qq e+e− −> qqg

Much cleaner events than hadron-hadron collisions
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QCD in ep Interactions
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Why do we Study Jets in ep ?

Direct 
photoproduction

QCD Studies
Measurements of αs
Fragmentation functions
Parton Distribution Functions
Color/spin dynamics
Quark-gluon jet properties
Event shapes
Inclusive- and Multi-jet production
Rapidity Gaps/Diffraction

Searches for new physics

Resolved 
photoproduction
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Proton-(Anti)proton Collisions
Proton beams can be accelerated to very high energies (good)
But the energy is shared among many constituents – quarks and 
gluons (bad)

Transverse
momentum Tp≡

To select the interesting collisions: look for outgoing particles 
produced with high momentum perpendicular to the beamline
(“transverse momentum”) → hard collisions
• Hard collisions take place at small impact parameter and are more 

accurately collisions between partons inside the two protons
• Analog of Rutherford’s experiment
• Forms the basis of the on-line event selection (“triggering”)
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pp Interactions

(uud)

Jet
D

xa xbp pf σ

Jet

a b

c

d

f

DetectorpT = psinθ
“Soft” collisions = small pT
“Hard” collisions = large pT

θ

= =

(uud)

Tevatronat  TeV 2=s

D

D(z,µF) is the
Fragmentation
function

Proton Remnant

Parton Distribution 
Functions
fa/A(xa,µF): Probability 
function to find a 
parton of type a inside 
hadron A with 
momentum fraction xa

xa: fraction of hadron’s 
momentum carried by 
parton a

µF: related to the 
“hardness” of the 
interaction
“Factorization Scale”

( )cdab →σ̂
Partonic level cross section
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 EM E          

 ICD/MG E      

 FH E          

 CH E          

“scattering angle”
azimuth

pp Interactions cont’dφ

Underlying
Event

u

u

d

g
q

q d

Hard Scatter

u

u

Complications from the 
e+e− due to:
– Parton Distribution 

Functions (PDFs)
– “Colored” initial and final 

states
– Remnant jets - Underlying 

event (UE)
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ET1 ~ 620 GeV
ET2 ~ 560 GV
MJJ ~ 1.2 TeV
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Au+Au collision at RHIC Now this is a complicated event!
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Why do we Study Jets in Hadron Colliders?
QCD Studies

Measurements of αs
Fragmentation functions
Parton Distribution Functions
Color/spin dynamics
Quark-gluon jet properties
Event shapes
Inclusive- and Multi-jet 
production
Rapidity Gaps/Diffraction
Production of Vector Bosons + 
jets

Study of heavy particles (e.g. 
top production)
Searches for Higgs
Searches for new physics

Quark sub-structure + …
And much more …
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Explanation of the blob’s 

(uud)

Jet
D

xa xbp pf σ

Jet

a b

c

d

f

Detector

θ

= =

(uud)

D

(uud)

Jet
DD

xa xbp pf σσ

Jet

a b

c

d

f

Detector

θ

= =

(uud)

DD

pf =

(uud)

Parton Distribution Functions

xf(x,Qo) = Ao xA1 (1-x)A2 P(x)

small x behavior

large x behavior

in between

Parton Distribution Functions of the 
proton are measured at a some “hard 
scale” and evolved via pertrurbative
QCD to the “scale” of the interaction
PDFs are determined doing Global Fits 
of data from DIS (Deep Inelastic 
Scattering), DY (Drell-Yan), Direct 
Photons, and production of jets
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Explanation of the blob’s cont’d 
Particle Fragmentation Functions

Particle Fragmentation Functions DA/a (zA,µF) measure the probability 
of finding a particle of type A with momentum fraction zA of parent 
parton a
Fragmentation functions are determined doing Global Fits of data from 
DIS and e+e−

The “evolution” of the Fragmentation functions can be calculated by 
pQCD

(uud)

Jet
D

xa xbp pf σ

Jet

a b

c

d

f

Detector

θ

= =
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Jet
DD

xa xbp pf σσ
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Detector

θ
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(uud)

DD
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Explanation of the blob’s cont’d 
Hard Scattering Cross Section
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What’s the deal with the various scales?
µF is the factorization scale that enters in the evolution of the PDF’s
and the Fragmentation functions (could be two different scales). It is 
an arbitrary parameter that can be thought as the scale which 
separates the long- and short-distance physics
µR is the renormalization scale that shows up in the strong coupling 
constant
Q is the hard scale which characterizes the parton-parton interaction
Typical choice: µF = µR = Q ~ pT/4 – 2pT of the jets

σX = (PDF’s for p and p) ⊗ (partonic
level cross section)

Separate the long-distance 
pieces (PDF’s) from the short-
distance cross section →
Factorization
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Detector 
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Explanation of the blob’s cont’d 

Typical Detector

CDF

Fermilab Accelerators

DØ
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Tevatron Runs
Run I

1992-1996
ECM = 1.8 TeV
~120 pb-1

(0.63 TeV ~600 nb-1)

Run IIa
2002-2005
ECM = 1.96 TeV
~ 1.5 fb-1

Run IIb
2006-2009
ECM = 1.96 TeV
~4-8 fb-1

Main Injector
& Recycler

Tevatron

Chicago
↓

⎯p source

Booster

⎯p

p

p ⎯p
1.96 TeV

CDF
DØ
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Kinematics in Hadronic Collisions

Rapidity (y) and Pseudo-rapidity (η)
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Kinematics in Hadronic Collisions cont’d
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What are Jets ?
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What are Jets ?

Whatever objects my jet
algorithm finds!
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What are Jets ?

Colored  partons from the hard scatter evolve via soft quark and gluon 
radiation and hadronization process to form a “spray” of roughly 
collinear colorless hadrons −> JETS
The hadrons in a jet have small transverse momenta relative to their 
parent parton’s direction and the sum of their longitudinal momenta
roughly gives the parent parton momentum

Keep in mind that there are particles in a jet originating from other partons
in the event

Jets manifest themselves as localized clusters of energy

Jet

outgoing parton

Fragmentation process

Hard scatter

colorless states 
- hadrons -

R = +( ) ( )∆η ∆φ2 2coneR
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pp Interactions – Creation of Jets

p=

(uud)

(uud)

p=

{π,K,p,n,…}

Jet

Beam
Remnants

Beam
Remnants

Initial State Radiation
(ISR)

Hadronization

Final State Radiation
(FSR)

Detector
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First Evidence for Jets
First experimental evidence of quark-initiated jets 
in e+e- annihilations, SLAC-SPEAR at Ecm ~ 7 GeV
G. Hanson et al. (MARK-I Collab), PRL 35, 1609 (1975)

Gluon-initiated jets were discovered in e+e- annihilations 
DESY-PETRA at Ecm > 15 GeV
MARK-J Collab., PRL 43, 830 (1979); TASSO Collab., Phys. Lett. B86, 
243 (1979); PLUTO Collab., Phys. Lett. B86, 418 (1979);
JADE Collab., Phys. Lett. B91, 142 (1980)

e+e− → q q g
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Jet Algorithms
The goal is to apply the “same” jet clustering 
algorithm to data and theoretical calculations 
without ambiguities 
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Jet Algorithms
The goal is to apply the “same” jet clustering 
algorithm to data and theoretical calculations 
without ambiguities 

Jets at the “Parton Level” (i.e., before 
hadronization) 

Fixed order QCD or (Next-to-) leading 
logarithmic summations to all orders

2 → 2 process
Leading Order QCD

2-jet final state
1 parton/jet

outgoing parton

Parton showering

Hard scatter

multi-jet final state
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Jet Algorithms
The idea is to come up with a jet algorithm 
which minimizes the non-perturbative
hadronization effects

Hard scatter

Fragmentation process

Jet

hadrons

outgoing parton

Parton showering
+ Hadronization
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Jet Algorithms

Jets at the “Detector Level”
Calorimeter - clusters of energy “towers”
Tracking - clusters of tracks
Combination of detectors

Calorimeter

Calorimeter jet energy resolution:

%5%80
⊕≈

TT EE
σ
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Jet Algorithms - Requirements 

Experimental:
– Detector independence - Can everybody implement this?
– Minimization of resolution smearing/angle bias
– Stability with Luminosity
– Computational efficiency
– Maximal reconstruction efficiency

Theoretical:
– Infrared safety

• insensitive to “soft” radiation
– Collinear safety

– Low sensitivity to hadronization
– Invariance under boosts
– Same jets at parton/particle/detector levels
– Straight forward implementation

The full report of the Run II 
Jet algorithm specification is 
available at hep-ex/0005012
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Jet Finders
(Generic Recombination)

Define a resolution parameter ycut

For every pair of particles (i,j) compute the “separation”
yij as defined for the algorithm

If min(yij) < ycut then combine the particles (i,j) into k
– E scheme:            pk=pi+pj massive jets
– E0 scheme:                                 massless jets

Iterate until all particle pairs satisfy yij>ycut

No problems with jet overlap
Less sensitive to hadronization effects
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The JADE Algorithm  
)cos1(22

ijjiij EEM θ−=

cut
vis

ij
ij y

E
M

y <= )min()min( 2

2

Recombination: pk = pi+pj

Problems with this algorithm
– It doesn’t allow resummation when ycut is small
– Tendency to reconstruct “spurious” jets

i.e. consider the following configuration  where two soft gluons are emitted 
close to the quark and antiquark
The gluon-gluon invariant mass can be smaller than that of any gluon-quark and 
therefore the event will be characterized as a 3-jet one instead of a 2-jet event

(Evis is the sum of all particle energies)

x 3-Jet event √ 2-Jet event

i
jθij
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The Durham or “kT” Algorithm  
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Recombination: pk = pi+pj

It allows the resummation of leading and next-to-leading 
logarithmic terms to all orders for the regions of low ycut

kT

√ 2-Jet event
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The “kT” Jet Algorithm for Hadron Colliders

The kT jet algorithm successively merges pairs of partons, 
particles, calorimeter towers, or tracks in order of 
increasing relative transverse momentum (kT)
It contains a parameter D (~0.5-1) that controls the 
termination of the merging and characterizes the 
approximate size of the resulting jets
kT jets are infrared and collinear safe
There are no overlapped jets
Every parton, particle, or detector tower is unambiguously 
assigned to a single jet
No biases from seed towers
Less sensitive to hadronization effects
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The “kT” Algorithm cont’d  
Input:  List of Energy preclusters )2.0( ≈∆ preclusterR
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The Cone Jet Algorithm for Hadron Colliders
A more intuitive representation of a jet that is given by 
recombination jet finders
It requires “seeds” with a minimum energy of ≤ 1 GeV (to 
save computing time)
– Preclusters are formed by combining seed towers with their 

neighbors within a cone of radius R is η−φ space
– For each precluster the ET-weighted centroid is found and a new 

cone of radius R is drawn around it
– Iterate until stable solution is found

Jet cones may overlap so need to split/merge overlapping 
jets

Jet Seeds

Calorimeter ET

Merge if  shared 
ET > 50-75% of min(ET1,ET2)

DØ - CDF
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The DØ/CDF Jet Cone Algorithm for Run I 
In Run I: DØ and CDF used Snowmass (1990) clustering and 
defined angles via momentum vectors

DØ and CDF’s Angles:
CDF’s ET:

DØ’s ET: ∑
⊂

=
Ji

i
T

J
T EE
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The Cone Algorithm at 3-Parton Final States  
Apply Snowmass jet algorithm
– Each parton must be within Rcone of centroid

The two partons must be within RsepxRcone of one another, 
where Rsep varies from 1 - 2 (Rsep=1.3 for DØ/CDF)
– introduce ad-hoc parameter Rsep to control parton recombination in 

the theoretical jet algorithm and simulate the role of seeds and
merging in the experimental algorithm

– it doesn’t generalize to higher orders Rcone

Rsep

N
um

be
r o

f j
et

s

Rsep=1.3

DØ Cone Radius = 0.7

Delta_R

Run I

If jets from separate 
events are overlaid then
they can be distinguished 
at 1.3xRcone=0.9 for 
0.7 cone jets:
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The Next Generation of Cone Algorithm  
Issues with the Snowmass Cone Algorithm

Sensitivity to infrared and collinear radiation
Not proper 4-vector kinematics used in particle clustering and 
in calculating the final jet parameters

The Solution:  Develop a “seedless” jet algorithm with 
proper kinematics

Infrared and Collinear safe
Very computationally intensive 

What was done:  Develop the Midpoint jet algorithm
Approximates the seedless algorithm
Infrared safe 
Proper 4-vector kinematics used in all steps massive jets
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The Midpoint Jet Cone Algorithm for Run II

Proto-jets are formed by combining seed particles with 
their neighbors within a cone of radius Rcone using the E-
scheme

Particles = calorimeter towers, MC hadrons or partons
Midpoint seeds are added between proto-jets

Only midpoints between proto-jets satisfying the following 
conditions are considered:  ∆R > Rcone and ∆R < 2×Rcone

Proto-jets found around seeds and midpoints can share 
particles 

Merging/splitting procedure has to be applied
Merge jets, if more than a fraction f (50% for DØ, 75% for CDF) 
of min(pT1,pT2) of overlapping jets is contained in the overlap region
Otherwise split jets; assign the particles in the overlap region to 
the nearest jet

Keep only final jets with pT > threshold
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Not a Perfect World After All!

Significant amounts of energy is not clustered in Midpoint algorithm

To reduce this effect CDF is using two 
values for the cone radius: one during 
search for stable cones (Rcone/2) and 
the second (Rcone) during the calculation 
of the final jet properties Search 
Cone Algorithm… this leads to other 
“features”

Overall this effect is quite small
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To reduce this effect CDF is using two 
values for the cone radius: one during 
search for stable cones (Rcone/2) and 
the second (Rcone) during the calculation 
of the final jet properties Search 
Cone Algorithm… this leads to other 
“features”

This effect is c
urrently under study 

between the two experiments

Overall this effect is quite small
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Looking Inside the Jets

( )rΨ

The investigation of jet profiles gives insights into the transition 
between the parton produced in the hard process and the observed 
spray of hadrons
Jet profiles are sensitive to the quark/gluon jet mixture

Could separate quark and gluon jets in a statistical way
Energy Flow (Jet Shape):

Measure the average transverse energy flow in sub-cones as a function of 
radial distance from the jet axis 
Use calorimeter towers or charged tracks

22 )()( φη ∆+∆=r
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Jet energy profiles at Tevatron Run II

Gluon enriched jets (low-x/low-pT jets at Tevatron) 
are “broader” (i.e. less collimated, higher multiplicity 
of soft energy particles) than Quark-enriched jets 
(high-x/high-pT jets)
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Jet energy profiles at Tevatron

Gluon enriched jets (low-x/low-pT jets at Tevatron) 
are “broader” (i.e. less collimated, higher multiplicity 
of soft energy particles) than Quark-enriched jets 
(high-x/high-pT jets)

Run II
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Property of gauge theories.  Similar effect in QED, the “Chudakov
effect” observed in cosmic ray physics in 1955

In QCD color coherence effects are due to the interference of soft 
gluon radiation emitted along color connected partons
Two types of Coherence:
– Intrajet Coherence

• Angular Ordering of the sequential parton branches in a partonic
cascade

– Interjet Coherence
• String or Drag effect in multijet hadronic events

Coherence

eeθ
γθ e

γ
e−

e+

γθθ eee >
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Shower Development
“Traditional Approach”

Shower develops according to pQCD into spray of partons until a 
scale of Q0 ~ 1 GeV.

Thereafter, non-perturbative processes take over and produce the 
final state hadrons

Coherence effects are included probabilistically (e.g., Angular 
Ordering, color dipole) and in the hadronization model

DGLAP Splitting Kernel
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Shower Development
“Traditional Approach”

Shower develops according to pQCD into spray of partons until a 
scale of Q0 ~ 1 GeV.

Thereafter, non-perturbative processes take over and produce the 
final state hadrons

Coherence effects are included probabilistically (e.g., Angular 
Ordering, color dipole) and in the hadronization model

DGLAP Splitting Kernel

“Local Parton Hadron Duality (LPHD) Approach”

Parton cascade is evolved further down to a scale of about Q0 ~ 250 
MeV.

No hadronization process;  Hadron spectra = Parton spectra

Simplicity.  Only two essential parameters (ΛQCD and Q0) and an 
overall normalization factor
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What is an Event Generator ?
A “C” (of “Fortran”) program that generates 
events, trying to simulate Nature!
Events vary from one to the next (random 
numbers)
Expect to reproduce average behavior and 
fluctuations of real data
Event Generators include:
– Parton Distribution functions
– Initial state radiation
– Hard interaction
– Final state radiation
– Beam jet structure
– Multiple Parton Interactions
– Hadronization and decays

Some programs in the market:
JETSET, PYTHIA, LEPTO, ARIADNE, HERWIG, COJETS...

Some parton-level only:
VECBOS, NJETS, JETRAD, HERACLES, COMPOS, ALPGEN, 
PAPAGENO, MADGRAPH, EUROJET...
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Hadronization Models
Independent fragmentation
– it is being used in ISAJET and COJETS
– simplest scheme - each parton fragments independently following 

the approach of Field and Feynman
String fragmentation
– it is being used in JETSET, PYTHIA, LEPTO, ARIADNE

Cluster fragmentation
– it is being used in HERWIG

String Fragmentation: Separating 
partons connected by color string 
which has uniform energy per unit 
length, corresponding to a linear 
quark confining potential

Cluster Fragmentation: Pairs 
of color connected neighboring
partons combine into color 
singlets.

Z0/γ
e−

e+

q

q

Z0/γ
e−

e+

q

q
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e+e− interactions:
Coherence Observations

First observations of final state color coherence effects in the
early ’80’s (JADE, TPC/2g, TASSO, MARK II Collaborations) (“string” or
“drag” effect)

q

q

γ q

q

g

e+e− → q q ge+e− → q q γ

Depletion of particle flow in region between q and q
jets for qqg events relative to that of qqγ jets.
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gqqeeqqee →→ −+−+     vsγ

Particle flow in event plane
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Coherence Observations cont’d
pp interactions:

Colored constituents in initial and final state (more complicated 
that e+e−)

Emission from each parton is confined to a cone stretching to 
its color partner
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Color Coherence – Wgqq →

Compare pattern of soft particle flow 
around jet to that around (colorless) W

Color connections
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p=

(uud)

(uud)

p=

Color Coherence –

W

Event Plane

Transverse Plane

Wgqq →
Soft gluon radiation 
preferentially emitted
in the event plane

Initial-Final State
Constructive interference
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Soft gluon radiation 
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in the event plane

Compare pattern of soft particle flow 
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Initial-Final State
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Jet Production @ Tevatron
Motivation:

– Search for breakdown of the Standard Model at shortest distances
• At Tevatron energies:

– Search for new particles decaying into jet final states
– Search for quarks substructure
– Constrain gluon density at high x
– Precision studies of QCD
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Challenges with Jets
Triggering on Jets
– reduce rate from ~106 to ~ tens of Hz

• multiple triggering stages; Level-1,2,3
– implement fast/crude jet clustering algorithms for L1/2

Selection of a Jet Algorithm
– at detector, particle, parton/NLO++ level

Jet Reconstruction, Selection, and Trigger Efficiencies
Jet Calibration
– underlying event definition (subtract or not?)
– out-of-cone showering effects
– correction back to particle jet or original parton?

Jet Resolution
– difficulties with low-ET region and near reconstruction threshold

Simulation of Jet/Event/Detector Characteristics
– precision of detector modeling vs CPU time
– ability to overlay zero/minimum-bias events from data 
– tuning of fragmentation model, selection of PDF, hard scale 

parameter Q, …
– Interface a ME event generator with a parton-shower simulation
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High-ET Jet Production

1P1P

2P2P

11Px 11Px

22 Px 22 Px

1jet 1jet

2jet 2jet

( )sασ̂ ( )sασ̂

( )1/ xf Aa ( )1/ xf Aa

( )2/ xf Bb ( )2/ xf Bb

Quark substructure ?
PDFs ?

ET
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Central η region

Significant gluon 
contribution at high pT
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Resent results from Tevatron
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Resent results from Tevatron cont’d
Run II kT jet algorithmMid-point jet algorithm
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ppThe far future...

distance resolution ~10-20 m

16 orders of 
magnitude drop
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Jets celebrate their 30th year since first observed in e+e-

Jets have provided the means to study the SM and explore possibilities 
beyond
There are still issues to be resolved with the jet algorithms

See the current effort in the TeV4LHC Workshop
More sophisticated jet algorithms are under development

Tevatron Run II is setting the stage for jet physics at LHC 

CMSCMS

http://conferences.fnal.gov/tev4lhc/
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