Lecture 2: CPV in B system

CTEQ Summer School Rhodes, Greece - July 2006 Franco Bedeschi, Istituto Nazionale di Fisica Nucleare

Outline

Reminder CKM matrix
 Basic theory CP violation in B system
 β, α, γ, β_s (χ)
 Current status of B-factory measurements
 Estimate of Hadron Collider experimental reach
 Global picture and implications on new physics

b-decays: CKM matrix

Vub/ Vcb is related to fraction of b-hadron decays with no charm in final state

> Hard to measure at hadron colliders. Done at CLEO, LEP, B-factories

✤ V_{td}/ V_{ts} is related to mixing (see later)

Hadron colliders are very competitive and are the only place where V_{ts} can be measured directly

The angles of the triangle are related to CP violation

Hadron colliders and B-factories complement each other in these difficult measurements

CP violation classification

CP transformation flips sign of weak phases and leaves strong phases unchanged in amplitudes
► CP violation in decay
■ A(B→f) ≠ A(B→ f)

► CP violation in mixing (already discussed)
■ N(BB) ≠ N(BB)

CP violation in the interference between a decay with mixing and one without mixing

Rhodes, July 2006

CP Violation in the B System

CPV through interference between mixing and decay amplitudes

Directly related to CKM angles for single decay amplitude

Mixing mediated CPV (1)

◆ CPV from interference of unmixed and mixed decays to a common final state → $|A(B \rightarrow f)| \neq |A(\overline{B} \rightarrow f)|$

► Definitions:
$$A = \langle f | B(0) \rangle$$
, $\bar{A} = \langle f | \bar{B}(0) \rangle$
 $\lambda = \frac{\bar{A}q}{Ap} \approx \frac{\bar{A}}{A} e^{2i\beta(s)}$, $|\lambda| \approx \frac{|\bar{A}|}{|A|}$

> Use again equations of time evolution of B states:

$$< f|B(t) > = e^{-imt}e^{-\frac{\Gamma t}{2}}A\left(\cos\frac{\Delta mt}{2} - i\frac{Aq}{Ap}\sin\frac{\Delta mt}{2}\right) \quad \mathbf{B}(0) \rightarrow \mathbf{f}$$
$$< f|\bar{B}(t) > = e^{-imt}e^{-\frac{\Gamma t}{2}}\bar{A}\left(\cos\frac{\Delta mt}{2} - i\frac{Ap}{\bar{A}q}\sin\frac{\Delta mt}{2}\right) \quad \mathbf{B}(0) \rightarrow \mathbf{f}$$

 $| < f|B(t) > |^{2} = \frac{e^{-\Gamma t}}{2} \left[\left(|A|^{2} + |\bar{A}|^{2} \right) + \left(|A|^{2} - |\bar{A}|^{2} \right) \cos\Delta mt + 2|A|^{2} \mathcal{I}m\lambda \sin\Delta mt \right] \\ | < f|\bar{B}(t) > |^{2} = \frac{e^{-\Gamma t}}{2} \left[\left(|A|^{2} + |\bar{A}|^{2} \right) + \left(|\bar{A}|^{2} - |A|^{2} \right) \cos\Delta mt - 2|A|^{2} \mathcal{I}m\lambda \sin\Delta mt \right]$

u, c, 1

B

d

Rhodes, July 2006

F. Bedeschi, INFN-Pisa

BR ~ 10⁻⁵

 K^0_S

CKM angle β

Current results dominated by Bfactories

Tevatron experiments: comparable statistics but smaller tagging power

- Experimental considerations:
 - Very similar to mixing analysis
 - ➢ Very important dilution calibration
 We measure D sin(2β)

Expected accuracy from time dependent fit $(x_d = \Delta m_d \tau_d)$:

$$\sigma(\sin(2\beta)) = e^{(\Delta m\sigma_t)^2} \sqrt{\frac{1+4x_d^2}{2x_d^2}} \sqrt{\frac{N_S+N_B}{N_S}} \sqrt{\frac{1}{N_S\epsilon D^2}}$$

Rhodes, July 2006

 $sin(2\beta)/sin(2\phi_1)$ BaBar $0.72 \pm 0.04 \pm 0.02$ PRL 94, 161803 (2005) Belle $0.65 \pm 0.04 \pm 0.02$ BELLE-CONF-0569 $0.84^{+0.82}_{-1.04} \pm 0.16$ ALEPH PLB 492, 259-274 (2000) 3.20 +1.80 ± 0.50 OPAL EPJ C5, 379-388 (1998) 0.79 +0.41 CDF PRD 61, 072005 (2000) Average 0.69 ± 0.03 HFAG -1 0 2 -2 1 3

CKM angle β

Pure penguins sensitive to new physics in loops
Interesting to compare pure tree with pure penguins

b→ccs	World Average		
φ K ⁰	Average	+*	0.47±0.19
η′ K⁰	Average	*	0.50 ± 0.09
f₀ K _S	Average	+ +	0.75±0.24
π ⁰ K _S	Average	⊢★ -1	0.31±0.26
π ⁰ π ⁰ K _S	Averag e \star		-0.84±0.71
ωK _s	Average	-+-+	0.63±0.30
K⁺ K⁻ K⁰	Average	+*	$0.51 \pm 0.14 \substack{+0.11 \\ -0.08}$
K _s K _s K	s Average	⊢★ -1	0.61±0.23
-3	-2 -1	0 1	2

Naïve avg. 0.50 ± 0.06

BaBar/Belle find Penguin systematically lower then Tree 2.8 σ effect ... more statistics will tell

Rhodes, July 2006

Sin 2β at Tevatron

Model independent limits on new physics

$$M_{12} = M_{12}^{SM} + M_{12}^{BSM} = M_{12}^{SM} (1 + he^{i\sigma})$$

$$\blacktriangleright \Delta m = 2|M_{12}|, \arg(M_{12}) = \beta$$

Combined measurement of mixing frequency and mixing phase provides strong model independent limit on new physics contributions

Rhodes, July 2006

Limits on new physics (2)

15/39

Status much less constrained in the case of the Bs Need to measure the phase β_s even with a large error! Feasible only at hadron colliders

$\sin 2\alpha$

 $\alpha = \pi - \beta - \gamma \left(\sin(\alpha) = \sin(\beta + \gamma) \right)$

 \succ Need decay with weak phase γ

> B_d $> \pi^+\pi^-, \rho^+\rho^-$

💠 ... but:

- → serious penguin contamination at same order in $\lambda \rightarrow S$, C ≠ 0
- Unfolding penguins requires complex isospin analysis involving also other B_d decay modes:

BR and A_{CP} of $B_d \rightarrow \pi^0 \pi^0$, $B^{\pm} \rightarrow \pi^{\pm} \pi^0$

Done at B-factories

At the Tevatron can measure both $B_d \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$ then assume SU(3) symmetry Rhodes, July 2006

17/39

$B \rightarrow h^+h^-$ at Tevatron

***** Large $B_d \rightarrow \pi^+\pi^-$ signals

Can measure $A_{\pi\pi}$, $S_{\pi\pi}$ with accuracy comparable to B factories

... isospin analysis impossible, but measurement can be combined to B-factories to add accuracy to asymmetries

- Can measure direct CP violation in $B_d \rightarrow K^+\pi^-$ decays
 - Checks B-factories
- Can measure also $B_s \rightarrow K^+K^-$ and the associate asymmetries
 - $\stackrel{>}{\succ} \underline{\text{Allows determination of } \gamma \text{ under the assumption of SU(3)} }_{\text{symmetry}}$

Direct CP in $B_d \rightarrow K^+\pi^-$

- Interference between penguin and tree diagrams
- First observed at B-factories:
 - A_{CP}^{BaBar} = $-0.133 \pm 0.030 \pm 0.009$ A_{CP}^{Belle} = $-0.113 \pm 0.022 \pm 0.008$
- Current Tevatron result with 360 pb⁻¹
 - $A_{CP}^{CDF} = -0.058 \pm 0.039 \pm 0.007$
 - Small systematics from calibration with huge sample of $D \rightarrow K\pi$
 - Expect resolution at B-factories level with 1 fb⁻¹ already on tape

21/39

$(S_{\pi\pi}, A_{\pi\pi}), (S_{KK}, A_{KK})$ expectations

22/39

Expected CP asymmetry resolutions in Bd $\rightarrow \pi\pi$ and Bs $\rightarrow KK$ ***** \rightarrow Can reach resolution at 0.2 level \rightarrow comparable to B-factories for $\pi\pi$

- Will measure also Bs asymmetry with comparable resolution
 - B-factories can't do it!
 - <u>Can use to measure γ </u> **CDF Runll Preliminary** ಕಿ0.7 ≺ $B_{e} \rightarrow KK$ **CDF Runll Preliminary** ь чо Чсь 1.2 $\in \mathbf{D}^2 = 5\%$ $B^0 \rightarrow \pi\pi$ 0.6 σ**, = 50 fs** \in **D**² = 5% 85 fs seen 0.5 A factor of 4 below Yellow Book 0.4 0.8 $x_{s} = 50$ 0.3 0.6 x_s = 30 0.4 0.2 σ A_{CP} (Dir) $x_{s} = 20$ σA_{CP} (Mix) 0.2 0.1 σ **Α_{CP} (Dir, Mix)** 1000 2000 3000 4000 5000 6000 7000 8000 1000 2000 3000 4000 5000 6000 8000 7000 Integrated Luminosity [pb Integrated Luminosity [pb Scaling from current yields F. Bedeschi, INFN-Pisa

Rhodes, July 2006

Measuring γ with $B \rightarrow hh$

Interpretation of asymmetries (Fleischer, PLB459, 1999)

> Parameterize in terms of \blacksquare CKM phase γ , β $\odot \beta$ from ψK_{c}^{0} \blacksquare d eⁱ⁰ = hadronic Penguin/Tree > Assume SU(3) symmetry $\blacksquare d e^{i\theta} same for B_d \rightarrow \pi\pi, B_s \rightarrow K\overline{K} (\sim 20\%)$ $\blacksquare A^{dir}(\pi\pi) = -2d \sin\theta \sin\gamma + O(d^2)$ $\blacksquare A^{dir}(KK) = 2\lambda^2 \qquad \sin\theta \sin\gamma + O((\lambda^2/d)^2)$ $d(1-\lambda^2)$ $\blacksquare A^{\text{mix}}(\text{KK}) = \underline{2\lambda^2} \qquad \cos\theta \sin\gamma + O((\lambda^2/d)^2)$ $d(1-\lambda^2)$ - $A^{mix}(\pi\pi) = \sin 2(\beta + \gamma) + 2d \cos \theta x$ $(\cos\gamma\sin 2(\beta+\gamma)-\sin(2\beta+\gamma)+O(d^2))$

Rhodes, July 2006

Measuring γ with $B \rightarrow hh$

Can solve for d, θ and γ

- \triangleright Worse case when sin $\theta \sim 0$ assumed
- Fit result when

20% SU(3) breaking effects

Measurements of γ

Methods for γ determination at B-factories GLW, ADS, Dalitz Recent development at Tevatron and perspectives

25/39

GLW measurements alone do not constraint γ/ϕ_3 . Information on γ and r_B from combination with other methods.

Rhodes, July 2006

Rhodes, July 2006

GLW γ prospects at Tevatron

Same γ searches possible at Tevatron
 No tagging so statistics pays off in full
 Work in progress:
 Show status of GLW analysis

32/39

GLW γ at Tevatron (1)

First step achieved with

360 pb⁻¹ ➢ Measured

$$R = \frac{BR(B^+ \to D^0_{flav} K^+)}{BR(B^+ \to D^0_{r} - \pi^+)}$$

$$BR(B^+ \rightarrow D^0_{flav} \pi^+)$$

Use combination of PID and kinematics as in $B \rightarrow hh case$

 $= 0.065 \pm 0.007 \text{ (stat)} \pm 0.004 \text{ (sys)}$

33/39

GLW γ at Tevatron (2)

Next step iterate procedure on CP D meson decays For same D K statistics obtain same resolution as Belle Yield comparison: \geq Belle 500fb⁻¹: expect 36k D⁰ π + \rightarrow CDF 1 fb⁻¹: 26k D⁰ π + 6 fb⁻¹: 150k D⁰ π + Tevatron could provide significant improvement of measurement of γ with this method

Global fits

Can test consistency of all measurements performing global fits of CKM parameters using all available measurements

> Two major efforts on the market

- CKM fitter
- UT fitter

Excellent consistency with Standard Model!!!

Rhodes, July 2006

Conclusions

CKM is established as the primary source of CP violation

- > On average the SM describes well all present measurements
- New physics in b \rightarrow d transitions is highly constrained
 - \rightarrow b \rightarrow s transitions have become major new focus

Tree/penguin discrepancies in $sin(2\beta)$

Improved accuracy required to resolve this

- \triangleright Also α and γ need better resolution
- Measurements at hadron colliders can be competitive and complementary (B_s) to B-factories
 - Very interesting to see evolution with full B-factories and Tevatron statistics toward the end of the decade
- New data from LHC-B with LHC startup could continue and extend the Tevatron program

Future new facilities like Super B factories could continue the work started by BaBar and Belle

Rhodes, July 2006