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e How do we determine them?- where does the information
come from?

 What are the uncertainties? -experimental
-model
-theoretical

3. Why are they important?



PDFs were first investigated in deep inelastic Leptonic

lepton-hadron scatterning -DIS tensor -
2 calculable
i)
£k Y
Candidate from NC sample do ~ ( ) L“ W|.4IV
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e q=k-k,Q2=-92 invariance
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s=(p+k)?
x =Q?/(2p.q)

y = (p-9)/(p.k)
W2 = Q2 (1/x — 1)

Q*=sxy

s=4E,E,
Q?=4E_FE’sin?0,/2
y=(1-FE'/E_ cos?0,/2)
X = Q?/sy

The kinematic variables are
measurable



Completely generally the double differential cross-section for e-N scattering

d?o(exN) = 27925 [ YF.(X,Q?) - V2F, (X,Q%) £ Y_xF,(x,Q9)], Yx=1% (1-yy

ady QT O / 7(®)

Leptonic part hadronic part £(k)

F,, F_ and xF; are structure functions
which express the dependence of the cross-section

on the structure of the nucleon— N{ﬁ

The Quark-Parton model interprets these structure
functions as related to the momentum distributions of
quarks or partons within the nucleon AND the (XP+ay=x*p=+gf+2xp.q ~ O
measurable kinematic variable x = Q2/(2p.q) is
interpreted as the FRACTIONAL momenttm of the

for massless quarks apdo

., (o)
incoming nucleon taken by the struck quark
x = Q(2p.q)
e.g. for charged lepton beams
F2(x,Q%) = 2, e2(xq(x) + xq(x)) — Bjorken scaling The FRACTIO'.\IAL :
FL(x,02) =0 - spin ¥ quarks momentum of the incoming
XF3(x,02) = 0 - only y exchange nucleon taken by the struck
However for neutrino beams quarkiis thfamEA)?URABLE
xF3(x,Q2)= %, (xq(x) - xq(x)) ~ valence quark quantity

distributions of various flavours



Consider electron muon scattering

do=2mnc? s[1+ (1-y}], for elastic @
dy Q

Isotropic non-isotropic
J/ =0 J'=—1

e& ez? z
e Aon e Aen,
2 2

do =2n¥e?s |1+ (1-y¥], so for elastic electron quark scattering, quark charge
dy @

d?o =2me?s [ 1+ (1-y¥] & eX(xq(x) +xq(x)) so for eN, where eq has c. of m. enérgy
dxdy ¢ equal toxs, and g(x) gives probability that
such a quark is in the Nucleon

Now compare the general equation to the QPM priedi¢d obtain the results
F.(x,Q2) =Z, e?(xq(x) + xq(x)) — Bjorken scaling
F . (X,Q2) =0 -spin ¥ quarks
XF,(X,Q2) = 0 - onlyy exchange



Considemw,v scattering: neutrinos are handed Compare to the general form of the cross-

_do(v)= G2x s _G(V) = G2x s (1yF section forv/v scattering via W,
dy k3 dy ™ F, (x,Q2)=0
Forv g (left-left Forv g (left-right —
a1 ) i 9o xF4(x,Q2) = Z2x(q;(X) - g;(x))
d2a(v) = G252, [xq;(x) +(1-yPxG(X)] Valence
dxdy M ForvN
Po(®) = G2S E, [<T() +{1-yPxg ()] F.Q2) = 2609+ k)
dxdy Tt ForvN Valence and Sea

Clearly there are
antiquarks in the
nucleon
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q = q/alence+qsea

3 Valence quarks
plus a flavourless
qq Sea
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And there will be a relationship between
F.eNand F VN

Also NOTE v,v scattering is FLAVOUR
sensitive

W+ can only hit
quarks of charge -e/3
or antiquarks  -2e/3

a(vp)~ (d+9) +(1-yp(U+T)
a(vp) ~ U+c) (1-yyF +(@+9




So inv,V scattering the sums over g, gbar
ONLY contain the appropriate flavours BUT-

high statistics,v data are taken on isoscalar ; 1 b enomrs
targets e.g. Fe= (p + n)/2=N 2 + s
B b 9 A
d in proton = u in neutron AL
0.8 - o
u in proton = d in neutron e é ;" o W A
_ _ _ I #{39':’*""'\"“39“ t =0.125
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xF 1 - P8 0 oo 0 - e
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F,(IN) = 18 F,(UIN) (and 20 years of understanding

the cC contributiohn
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—— ZEUS NLO QCD fit

[ tot. error
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x=0.0003
&« H196/47

* ZEUS96/97

s BCDMS BUT —

Bjorken scaling is broken — In@p

Particularly strongly at small x
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QCD improves the Quark Parton Model

i ' y :
g
Before the quark is struck? =

y>X, z=Xxly

22— [ et - sulat)[o™ (2 + ol o)
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aly'e— a9) = %Pﬁ'ﬂ 'IEJ‘“E_E
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3 A 5
Aalz, QY =gm§g [ a3
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The DGLAP parton evolution equations

Pqgq Pgq .
%\ B (2) 4{
o etz
Pqgg Pgg .
B, () 'mm< B, (2 rrrrrw—{;
g l-z

So F,(x,Q?) = Z; e(xq(x,Q?) + xq(x,Q?)

in LO QCD

The theory predicts the rate at which the
parton distributions (both quarks and
gluons) evolve with Q2- (the energy scale
of the probe) -BUT it does not predict
their shape



Note q(x,3) ~a,InQ?, buta(Q?)~1/InC®, so What if higher orders are needed?
a,InQ?is O(1), so we must sum all terms

asn InQZﬂ
Leading Log
Approximation

X decreases from

target to probe

Xi1” % 2 Kigqooo

p2of quark relative to proton
increases from target to probe

2 2 = N2
P < PS5 < B i1

Dominant diagrams have STRONG ~ Fl=.@%) _ ij & 20z, aaz, @) + Gz, )y, @]
p,ordering ’ "R

Pqq(z) = Pgq(z) +a, Plqq(z) a2 Pqq(z)
LO NLO NNLO

F2 is no longer so simply expressed , Chlz. i) = & [A{1 — 2) 4 aofalz]]

In terms of partons - _—
) . .. L Gﬁl (2. p) = "Tffp (2]
convolution with coefficient -

) . - " , 1
functions is needed R =27 [ ony @)+ mad [ V20 - 2wy &)
but these are calculable in QCD




How do we determine Parton Distribution Functions ?
Parametrise the parton distribution functions (PDFs)at Q?, (~1-7 Ge\#)- Use QCD
to evolve these PDFs to Q2 >Q20
Construct the measurable structure functions and cr 0Ss-sections by
convoluting PDFs with coefficient functions: make pr edictions for ~ 2000
data points across the x,Q2 plane - Perform x2 fit to the data

Formalism
NLO DGLAP
MSbar factorisation

e 1, (x,.Q9) £ &f, (x, @ |
functional form @ Q,?
sea quark (a)symmetry | as(M;) |
etc.

Who?

Data Alekhin, CTEQ, MRST,
DIS (SLAC, BCDMS, NMC, E665, GGK, Botje, H1, ZEUS,
CCFR, H1, ZEUS, ...) GRV, BFP, ...
Drell-Yan (E605, E772, E866, ...)

High E; jets (CDF, DO) l

W rapidity asymmetry (CDF) | http://durpdg.dur.ac.uk/hepdata/ |
VN dimuon (CCFR, NuTeV)
etc. | LHAPDFvs5 |




The DATA — the main contribution i1s DIS data

C:
% F B ZEUS 199697
4l 4- E= £EUS 199899 (Prel) L . .
N;“’ © D zEus e 157 Terrific expansion in measured range
i across the x, Q2 plane throughout the
10°F o ‘ 90's
E NALC
- BCDMS
02l = com =/ HERA data
E665 A
i y _ Ea‘i"; Pre HERA fixed target pp,uD NMC,
10 F Y Sl BDCMS, E665 and v,vbar Fe CCFR
L %.} ki
y L l%“‘“ We have to impose appropriate
s S kinematic cuts on the data so as to
w'l & remain in the region when the NLO
AR _ﬁ----" el vl DGLAP formalism is valid
10 10 10 10 10 10 1
X

1. Q?cut: Q?>few GeV? so that perturbative QCD is applicable- a (Q?) small
2. W?Z cut: to avoid higher twist terms- usual formalism is leading twist

3. x cut: to avoid regions where In(1/x) resummation (BFKL) and non-linear effects
may be necessary



Need to extend the formalism?
O tical theorem \ /

I The handbag
— 'm> < / \:/ diagram- QPM

/7 N
QCD at LL(®)
Ordered gluon ladders Sl What. loaUl
(a.n InQ2") completely disordered
S Ladders?
NLL(Q?) one rung at small x there may be
disorderedx " InQ? -1 a need for BFKL In(1/x)
resummation?

And what about Higher twist

diagrams ? \\:\ / /
Are they always subdominant? @\

Important at high x, low Q?




The strong rise in the gluon density at Iligh densily

small-x leads to speculation that there region e
may be a need for non-linear Gﬂ{ﬁ%‘u
equations?- gluons recombining G

99—4d

TIneconventional DGLAP
Madilicd BEFKL

S

Non-periurbalive
larec o, roelon

|
T CCEM
2
[
aa)

DGLARP —

fn Qﬂ—r

NLOQCDfit  Q%=20GeV*

D H1 1994
* & s
Non-linear fan diagrams form part R\ NMC
of possible higher twist TN E—
contributions at low X 15 | “" MRSRI
r -~ CTEQ4M

** GRVY%4-HO




The CUTS

In practice it has been amazing
how low in Q2 the standard
formalism still works- down to Q2 ~
1 GeV?: cut Q% > 2 GeV? is typical

It has also been surprising how low
in X —down to x~ 10 : no x cut is
typical

Nevertheless there are doubts as to
the applicability of the formalism at
such low-x..

(See much later)

there could be In(1/x) corrections
and/or non-linear high density
corrections for

x<510-3

-5 -3 -L
10 10 10 1
— ZEUS NLO QCD fit

:l tot. error

& FEUS 96897

~ ZEUS BPET 97

& ZEUS SVX 95

o E66S
r NMC



Higher twist terms can be important at low-Q2 and high-x — this is the
fixed target region (particularly SLAC).

Kinematic target mass corrections and dynamic contributions ~ 1/Q?
X— 2x/(1 + V(1+4m2x2/Q?))

Fit with F2=F2 ; (1 +D,(x)/Q?)
B T Dy(z) (GeV?)
_ _ 0 — 0.0005 0.0147
Fits establish that 0.0005 — 0.005 0.0217
higher twist terms 0.005 — 0.01 —0.0299
are not needed if 0.01 - 0.06 —0.0382
0.06 — 0.1 —0.0335
W2 > 15 GeV?2 - 0.1-0.2 —0.121
typical W2 cut 0.2-0.3 —0.190
) ¢ SLAC (x0.99) AI . f | 0.3-04 —0.242
0°F acows o) : SO No sign ot low- 0.4 - 0.5 ~0.141
I — MRST(HT) * X h|gher tW'St 05 _ 06 0248
“““ MRST effects in HERA 0.6 — 0.7 1.458
kinematic region 0.7 - 0.8 4.838
0.8 - 0.9 16.06




The form of the parametrisation

Parametrise the parton distribution functions (PDFs)at Q?, (~1-7 Ge\?)

XU, (X) =A X3(1-X)PU (1+ €, VX + Y, X)
xd, (x) =A X2 (1-x)P4 (1+ £, VX + y4X)
XS(X) =A XM (1-X)PS (1+ £, VX + Y X)

Xg(X) =AXMI(1-X)P9 (1+ €, X +Y,X)

S

These parameters These parameters
control the low-x control the middling-x
shape shape

These parameters
control the high-x
shape

Alternative form for CTEQ

Xf(x) — onAl(l_X)AZ eA3X (1+eA4x)A5

Parameters Ag, Au, Ad are fixed through
momentum and number sum rules —
explain other parameters may be fixed by
model choices-

Model choices =Form of parametrization at
Q%,, value of Q?, flavour structure of sea,
cuts applied, heavy flavour scheme —

typically ~15 parameters

Use QCD to evolve these PDFs to

Q2 >Q%,

Construct the measurable structure
functions by convoluting PDFs with
coefficient functions: make predictions
for ~1500 data points across the x,Q2
plane

Perform x2 fit to the data

The fact that so few parameters allows us to fit so many data points established
QCD as the THEORY OF THE STRONG INTERACTION and provided the first
measurements of o, (as one of the fit parameters)



The form of the parametrisation at Q4

xa(1-x)P ..... at one time (20 years ago?) we thought we understood it!

-------- the high x power from counting rules ----(1-x)2"s-1 - ns spectators
valence (1-x)3, sea (1-x), gluon (1-x)>

———————— the low-x power from Regge — low-x corresponds to high centre of mass
energy for the virtual boson proton collision ----- Regge theory gives high
energy cross-sections as s (@1) —--meeem- which gives x dependence x (-9
where a is the intercept of the Regge trajectory- different for singlet (no overall
flavour) F2 ~x° and non-singlet (flavour- valence-like) xF3~x0°->

But at what Q2 would these be true? — Valence distributions evolve slowly but
sea and gluon distributions evolve fast— we are just parametrising our
ignorance ----- and we need the arbitrary polynomial

In any case the further you evolve in Q2 the less the parton distributions look
like the low Q2 inputs and the more they are determined by QCD evolution

(In fact for the GRV partons one starts at very low-Q2 with valence-like input
shapes, which —0 as x —0, so that all low-x sea and gluon PDFs are
generated by QCD)



Example of parametrisation independence

Take sea=x2 ---------- valence-like Take sea=x2 ---------- zero and
and gluon - - - - zero at Q2=4 gluon - - - - valence-like at Q2=4
W 05 > 0.5
< Q%=1 GeV? x Q’=1 GeV
XZ:SX(l-x)3 xg:3x(1-xf “
0.25 0.25 /

o

[EY
o
[EEN
o
[EY
o
[ERY
[EEY
o
[EEY
o
[EEN
o
[EEY

X X
e i Q%10 GeV? x
0.25 |
0 7\é\mﬂ | \HHH‘ \ZH g v\;um\ﬂm
10~ 10 10 1
X
2
N i o
x i Q°=100 GeV x
1 -
O 7\\\\\UJJ HHHH‘ LI
-6 -4 2
10 10 10 1




But where is the information coming from?

Fixed target @/ p/D data frorNMC, BCDMS, E665, SLAC

F.(ejp)~ 4/9 x(u +ubar) +1/9x(d+dbar) + 4/9 x(c +cbar) +Bx(s+sbar)Assuming u in proton =
d in neutron — strong-

F.(ejuD)~5/18 x(u+ubar+d+dbar) + 4/9 x(c +cbar) +1/9x(s+str) isospin

Also usev, vbar fixed target data fro@CFR (Beware Fe target needs corrections)

F2(v,vbar N) = x(u +ubar + d + dbar + s +sbar + ¢ + cbar)

XF(v,vbar N) = x(u, + d, ) (provided s = sbar)
Valence information for O< x < 1

Can get ~4 distributions from this: e.qg. u, d, ubar, dbar — but need assumptions

like g=qgbar for all flavours, sbar = 1/4 (ubar+dbar), dbar = ubar (wrong!) and need heavy
guark treatment.

Note gluon enters only indirectly via DGLAP equations for evolution




Flavour structure

Historically an SU(3) symmetric sea was assumed Fo
d:dv+dsea @

U,,= ubar = d,, = dbar = s = sbar =K and c=cbar=0

u=u,+u

\Y sea’

Measurements of F,¥" = u, + 4d, +4/3K

F.bP 4u+ d, +4/3K

Establish no valence quarks at small-x F,*"/F,** —0

But Fr/Fip —»1/4asx — 1
<Q?*>

05 |

04 |

10

Not to 2/3 as it would for d /u,=1/2, (Gev?) *

hence it look s as if d /Ju,—0 as x —1

l.e the d, momentum distribution is softer than that of u, -
Why? Non-perturbative physics --diquark structures?

How accurate is this? Could d /u, —1/4 (Farrar and
Jackson)?

10

0.7

0.6

d/u

08 -

06 -

0.4 -

0.2 -

E= aqcofit

0 = 10 GeV?

————— CTEQ4M
-~ CTEQ4M (modified)

1 I
0.2 0.4

I
0.6 0.8 X




Flavour structure in the sea (3-0)

dbar #ubar in the sea Ly, T
Consider the Gottfried sum-rule (at LO)
| dx (F2p-F2n) = 1/3 [dx (uv-dv) +2/3]dx(ubar-dbar) -
If ubar=dbar then the sum should be 0.33 T esmen ]
the measured value from NMC = 0.235 + 0.026 oo e

Clearly dbar > ubar...why? low Q2 non-perturbative effects,

Pauli blocking, p —ntr*,ptm0, AT

sbar#(ubar+dbar)/2, V
In fact sbar ~ (ubar+dbar)/4 W+
x(s+8)
Why? The mass of the strange quark is C—S PV sl -t e com
larger than that of the light quarks S -

Evidence — neutrino opposite sign o e
dimuon production rates |
And even s#sbar? Because of p—AK+ *\\\Qiﬂz |

: T . T : T : T
o} 0.05 0.1 0.15 0.2 X




Heavy quark treatment — illustrate with charm

Massive quarks introduce another scale into the process, the approximation
m,>~0 cannot be used

Zero Mass Variable Flavour Number Schemes (ZMVFNSs) traditional

c=0 until Q% ~4m_?, then charm quark is generated by g— c cbar splitting and
treated as massless-- disadvantage incorrect to ignore m, near threshold

Fixed Flavour Number Schemes (FFNS)

If W2> 4m 2 then c cbar can be produced by boson-gluon fusion and this can be
properly calculated - disadvantage In(Q?/m_?) terms in the cross-section can
become large- charm is never considered part of the proton however high the
scale is.

General Mass variable Flavour Schemes (GMVFNS)

Combine correct threshold treatment with resummation of In(Q4/m_?) terms into
the definition of a charm quark density at large Q2

Arguments as to correct implementation but should look like FFN at low scale and
like ZMVFEN at high scale.

Additional complications for W exchange s—c threshold.
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Low-x — within conventional NLO DGLAP

Before the HERA measurements most of the prediction s for low-x
behaviour of the structure functions and the gluon PDF were wrong

HERA ep neutral current ( y-exchan much more information on

the sea and gluon at small x.....

ge) data qi

- (A=15 Geve e JXT T ) | .
E — DOE4 /:_ §* = 15 Gev® _: Xsea dlreCt|y from F2,
:_ _____ EHLG B3 / 1.2 i Seequayks = H196/97 - F2 —Xq
[ KMRS 90 b g " wc.scoms, s XGluon from scaling
| — CTEQS&D 7 . .
. RV 91 L F 1 violations dF, /dInQ? —
B . [ HERA: . .
[ ANMC ([ e precision the relationship to the
2 ¥ BODMS | vaenzquarks 1 glUON IS much more
T e “E Fised target 1 direct at small-x,
F e i 0.2 — 1-2% precision _: dFZ/danz - qu Xg
i 1 IIIIIII| 11111l 0104 I — 1[:-3 I I ”';; 2 | I II”';I':I. 1 | — 1

wt oag? 1t w1 x



x 9(x,Q%)

I QCD Fits i ; * H196/97
20 - M (H1+BCDMS) total uncertainty | LOW-X 1§  Q=ISGeV « ZEUS9697
[ B (H1+BCDMS) exp. + «, uncert. r + BCDMS
[](H1+BCDMS) exp. uncertainty L6 - E665
I — (H1) T - NMC
15 g L4f
= L — ZEUSNLO QCD fit
|Q?=20 GeV? E 12 F [T tot. error
~ E 1]
10 - 5 |
- E 08 ]
| = Q=35 Ge¥
2 L
i 5 Sl
S g 04 F
© L
8 0.2 B
5 -
e NT 0 Lol -
01 5—4 1073 1072 10! 0~ 0™ 10~ 10” 10" 1
v 1 momeniunm fraction x
=) _ (@) iy ; ; 2
T = m g PP @ P ) _[12NC1Y) 12 = e
At small x, Gluon splitting 5, In/ x) a,~ 1/In QA2
O 27, functions become
small z=xly P& —+— Pa=—=% o000

A flat gluon at low @ becomes very
dofz.R)  w(QY fldyd . 4 steepAFTER Q? evolution AND F
dnd - % f: ?Eﬂm@ ) becomesgjluon dominated

Xg(x,Q?) ~ x -\ F(X,Q%) ~ XS, As=Ag -¢€



do/dQ” (pbiGev’)

High Q? HERA data

HERA data have also provided information at high
Q2 — Z0% and W+~ become as important as y
exchange — NC and CC cross-sections comparable

. ForNC processes

F,= 2 A(Q) [xai(x%, Q) + xq(x,Q?)]

xF3= 2 B{(Q?) [xqi(x,Q®) - xq(x,Q?)]

A( = g2-2 gV, V P, + (v2+32)(v2+3?) P2
B(®= -2eaaP,+ 43aVvv, P/
P,2= Q/(Q? + M) 1/sir?0,,

£ % TI1 6 NC 94-00 prelin.
T 4 HLepNC

E O ZEUS ¢'p NC 9900 prelim.

i L 0 ZEUSepNC 9899
E - SMe'pNC(CTEQSD)
1F W, — SMepNC(CTEQSD)

10 = -

e
0 = _

E <
w =

E ¢ Hie'p CC94-00 prelita.
0 ;_ A HiepCC

E 0 ZEUSe'p CC 95-00 prelim.

SF 0 ZEUSepCC9899
10 - SMe'pCC(CTEQSD)
6C — SMepCC(CTEQSD)

[

F y<09
10 | III\I\I|3 | II\IIII|£1

10 10
Q' (Gev)
F Q7= 1500 GeV? F Q= 3000 GeV? F Q7= 5000 GeV?

—a new valence structure function xF, due to Z
exchange is measurable from low to high x- on a

| pure proton target — no heavy target corrections- no
assumptions about strong isospin

- e- running at HERA-II is already improving this

+ measurement



CC processes give

o Hilep — SMcp(CTEQSD) O H1e'p 9400 prefim. — SM c'p (CTEQSD)

o ZEUScpomey - xlwo) flavour information o zeuscpseospreim. - (yixiden

..... u_J.:.zx {3+5) R T2

zb T T ||||||I T T TTITTIT T T ||||||I T T T ITTIT T T ||||||I T T T ITTIT Eb 2 T T ||||||I T T TTTTIT T T ||||||I T T T TTITIT T T ||||||I
o=mocey | ogl=stocey’ | giz9sogeyv’ ] i T oi=zmoGeyt T o'=s0Geyy T O’ =950Gev
1

0.5 oo---

ag FH
06 [
04 F
02 f

0.2

o = 17000 Gev® ]

0.75 | 0.15 | = 3
0.5 | 01 f = 3
025 | 0.05 | Y+ & =
10™ 1 10" 1 10 1 1 10" 1
a(ep) = G2 M4, [x (U+Q) + (Lypx ([@+9]  GPo(eD) = G2 M4, [X (u+d) + (1-yPx (d+3)]
dxdy ZTI[:(Q?AZW)Z \ dxdy 2T[X(Q2+|\/|2W)2
u, at high x :
M, Infornfation d, at high x

Measurement of high-x d, on a pure proton target

d is not well known because u couples more strongly to the photon. Historically
information has come from deuterium targets —but even Deuterium needs binding
corrections. Open questions: does u in proton = d in neutron?,

does dv/uv = 0, as x = 17



Parton distributions are transportable to other processes

Accurate knowledge of them is essential for calculations of cross-sections of any
process involving hadrons. Conversely, some processes have been used to get further
information on the PDFs

E.G
DRELL YAN — p N —p+u- X, via g gbar — p+u-, gives information on the Sea

Asymmetry between pp — p+u- X and pn— p+u- X gives more information on dbar -
ubar difference

W PRODUCTION- p pbar — W*(W-) X, via u dbar —» W+*, d ubar — W- gives more
information on u, d differences

PROMPTg - pN—gX,viagqg—g(qg gives more information on the gluon
(but there are current problems concerning intrinsic pt of initial partons)

HIGH E; INCLUSIVE JET PRODUCTION —pp — jet+ X, viag g, g q, g gbar
subprocesses gives more information on the gluon
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New millenium PDFs

With uncertainty
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So how certain are we? First, some quantitative measure of the
progress made over 20 years of PDF fitting ( thanks to Wu-ki Tung)

Fixed-tgt HERA DY-W Jets Total

# Expt pts. 1070 484 145 123 1822
EHLQ ‘84 | 11475 7750 2373 331 21929
DuOw ‘84 8308 5005 1599 275 15187
MoTu  ~'90 3551 3707 857 218 8333
KMRS ~ ~90 1815 7709 577 280 10381
CTQ2M ~'94 1531 1241 646 224 3642
MRSA ~'94 1590 983 249 231 3054
GRV94 ~'94 1497 3779 302 213 5791
CTQ4M ~'98 1414 666 227 206 2513
MRS98 ~'08 1398 659 111 227 2396
CTQ6M 02 1239 508 159 123 2029
MRSTO1/2 1378 530 120 236 2264

\ 4




* x°(1-x)

x f(x,Q)

The u quark

LO fits to early fixed-target DIS data

— EHLQ84 7]
DuOws4 ux)atQ =10 GeV~ |

4

(Scale is4 linear in xm)

S 6.7 8

To reveal the difference in both large and small x regions

To view small and large x in one plot




2 .
CTQ2M ]
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* Rise from
HERA data
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* ¥ (1-x)°

f(x,Q)

d quark

D quark at (3 = 10 GeV —

The old and the new

EHLQ84

DuOw84
MoTu90
KMRS90
CTQ2M
MRSA95
GRV94
CTQ4M
MRS981
C6.1M
MRSTO1
Alekhin

0l \\ ——== =
| \

N\

O l l l l l l l

10’4 10'3 10'2 0.05 0.1 2 3 4 5 .

6 .7 .8

e 1
X (Scale is linear in x3)



The story about the gluon is

more complex

Gluon Distribution atéz 10 GeV  — EHLQ84 |
DuOw84

| | | | | | | | | | i
10%10° 10° 0.05 0.1 2 3 4 5 6.7.8

. 1Y
X (Scale is linear in x3)
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f(x,Q)

\

I | | | |
e 2 2
Gluon Distribution at Q" = 10 GeV~™ — EHLQs4
DuOw84
— MoTu90
— KMRS90

HERA steep rise of CTQ2M

MRSA95
F2 at low x — GRVO4

CTQ4M
MRS981
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C e 2 2 .
Gluon Distribution at Q =10 GeV™ — EHLQ84 A
DuOw84 |
2.5 More recent fits with HERA LV
N\ data- steep rise even for CTQ2M -
o MRSA95 |
= 7 low QZ ~ 1 GeV?2 —— GRV94 —
- CTQ4M
® IRS9]1
* . -
1.5 MRSTO1 | —
Alekhin /]|
9 -
\a Tev jet data A
0.5 _—
 Does gluon go negative at small x and low Q’?\\\\ \ v ]
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The non-strange sea quarks:

do not observe isospin symmetry

I I I I I

" (Db-Ub)/(Db+Ub) at G = 10 GeV -

i DuOw84 NA |
- | — MoTu90 7

- KMRS90 =\ -
i CTQ2M | .

| MRSA95
O — Grvos ES66 i

CTQ4M
— MRS981

i C6.1M ]
- |— MRSTO1 ]

Ratio (X,Q)

_ F2”-F2p iIn NC DIS experiments- Gottfried sum-rule violati .

Plus Drell-Yan data from NA51, E866

- 1 1 1 1 1 1 1 1 LA
110'410'3 10 0.05 0.1 2 3 4.5 6.7.8

. .1
X (Scale is linear in xa)

|




R (x,.Q)

The high-x shape of d/u

RN
A

| CDF W — lepton asymmetry

| HERA-II CC cross-sections will

improve this

D)/U(x) at Q° = 10 GeV’

—— EHLQ84
DuOw84
— MoTu90 | _
KMRS90
MRSA95 | _
—— GRV9%4
CTQ4M | |
— MRS981
C6.1M -
—— MRSTO01

N

| ] ] | ]

2 3

4 5 6 .7.8

- .13
(Scale is linear inx ")



R (x,Q)

Strange Content of the Nucleon

15 | | | | | - MR5981
(s+sb)/(db+ub) at O= 10 GeV | (&M :
- Experimental input: (low statistics) data on Dimuon -
I (charm) production in Neutrino-Nucleus scattering. il
1 |
0.5 |
- A better determination should emerge from current full NLO ]
- analyses of the NuTeV dimuon data. il
0 4, 3 2 O|05 Oll I2 I3 I4 I5 I6 I7 I8
10 10 10 . . . . . . . . .

. 1
(Scale is linear in x3)



|s the strangeness sector charge symmetric?- is this the cause of the
NuTeV sin2B,,, anomaly?

No aood data hiit how miich asvmmetrv can he tolerated?

The
dete

Strangeness Asymmetry{ s at Q2 = 10 GeV

— EHLQ84
DuOw84
— MoTu90
KMRS90
CTQ2M
MRSA95
— GRV94
CTQ4M
— MRS981
C6.1M
— MRSTO1
— Alekhin
StrAsy

R(x,Q)
o

10%10° 102 0.05 0.1 2 3 45 .6.738
X (Scale is linear in x3)



Is it true that u in proton = d in neutron
NOT if QED corrections are incorporated in the analysis- is this the cause of the
NuTeV sin?6,,, anomaly?

0.010

—rr1rrrrrrrrrr 1
| MRSTQEDO4
L Q° =20 GeV?
0.005 -

0.000

-0.005

0.0 0.2 0.4 0.6 0.8 1.0




* >3(L-x)°

f(x,Q)

Heavy quarks
Heavy quark distributions in fits are dynamically generated from g—c cbar

Results depend on the “scheme” chosen to handle heavy quark effects in
pPQCD-fixed-flavor-number (FFN) vs. variable-flavor-number (VFN)

schemes
05 T I T T T T T T T 1 ISLLNO'GJ‘”””‘“2“1““““”“““”ﬁ““““ ““”
Q?=2GeV
Charm quark at 6: 10 GeV — EHLOH [ o H19697 |
04l = Hlprel. |
\ DuOw84 L« ZEUS 98-00}
‘ — MoTu90 - o ZEUS 96-97f
i KMRS90 - == ZEUS NLO T
CTQM 02 g0
MRSA95 | 1
— GRV94 of
CTQUM |
— MRS981
C6.1IM
— MRSTO01
— Alekhin
o | \ [ N
10'410'3 10'2 005 01 2 3 456738

)
X (Scale is linear in xg)



ZEUS

Statistical Uncertainty
O I [ <2%

0% Il <4%
O M <10%

™ Modern analyses assess PDF
=0t uncertainties within the fit

.. Clearly errors assigned to the data points
translate into errors assigned to the fit
ya° parameters --

and these can be propagated to any
guantity which depends on these
parameters— the parton distributions or
the structure functions and cross-

y=1  sections which are calculated from them

X E

Systematic Uncertainty
<2%

<4%
<10%

|y=10

(L

<6F>= %5, 9F V, 9F
apj  apk

|y=10°
The errors assigned to the data are both
statistical and systematic and for much of
the kinematic plane the size of the point-
sl to-point correlated systematic errors is
X ~3 times the statistical errors.




What are the sources of correlated
systematic errors?

Normalisations are an obvious
example

BUT there are more subtle cases- e.qg.
Calorimeter energy scale/angular
resolutions can move events between
X,Q2 bins and thus change the shape
of experimental distributions

Vary the estimate of the photo-

Uncertainty (%)

ZEUS

[ Uncorrelated sys. uncertainty

Total systematic uncertainty

30} 30
f® Q%<50GeV? F
L 2 L
200 52<Q <5oocé-:ev2 20
[ Q*>500GeV r
L - X% * * X
10 10— . . x %, X g0
C C ®o %, S * X
. : o
O O
HH‘ L L1 ‘ I L \\\HH‘ L \\\HH‘ L -
3 -2 1 -3 -2 -1
10 10 10 10 10 10
y y
Statistical uncertainty Stat.0Sys. uncertainty
40— 40—
20 20

production background

Vary energy scales in different
regions of the calorimeter

Vary position of the RCAL halves

20 20
[ PHP+35%{9} Cells at low Y{10}
- - *
10 | 10F
- A - L4 0 0
of . N o ol
—> T [
-10F -10F
_20 _3 \H‘_Z ‘ 1 L1l _20 _3\ \\\‘_2 L1 H‘_l L L1 11l
10 10 10 10 10 10
y y
4 RCAL energy 2% { 7} 4=  RCAL halves 2 mm {2}

00,
+ atinnlly

=S \ \ b \ \ \
10 1072 107" y 1 10 10° 2103 )
Q° (GeV?)

Why does it matter?



Treatment of correlated systematic errors

X2 =X [EQCD _ E MEAS]2
! o-iST 2+4( iSYS)

Errors on the fit parameters, p, evaluated from Ax2 = 1,

THIS IS NOT GOOD ENOUGH if experimental systematic errors are correlated
between data points-

X2= 2. Zj [ F,QCD(p) — F, MEAS] /"1 F,QCD(p) — FF MEAS]
Vij = 6ij (6iSTAT)2 + ZA AiASYS AjASYS
WhereA,,5YSis the correlated error on point i due to systematic error source A

It can be established that this is equivalent to
X2 =X [FP(p) —2)94),°7° — F MEAST2 + X2

(o-i STAT) 2

Where s, are systematic uncertainty fit parameters of zero mean and unit variance

This has modified the fit prediction by each source of systematic uncertainty

CTEQ, ZEUS, H1, MRST have all adopted this form of  x2 — but use it differently in
the OFFSET and HESSIAN methods ...hep-ph/0205153
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Treatment of correlated systematic errors
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the OFFSET and HESSIAN methods ...hep-ph/0205153
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How do experimentalists usually proceed: OFFSET met  hod

Perform fit without correlated errors (s, = 0) for central fit

Shift measurement to upper limit of one of its sy =~ stematic uncertainties (s , =
+1)

Redo fit, record differences of parameters fromt  hose of step 1
Go back to 2, shift measurement to lower limit (s ,=-1)
Go back to 2, repeat 2-4 for next source of syste  matic uncertainty

Add all deviations from central fit in quadrature (positive and negative
deviations added in quadrature separately)

This method does not assume that correlated systema  tic
uncertainties are Gaussian distributed

Fortunately, there are smart ways to do this (Pasca  ud and Zomer LAL-95-05,

Botje hep-ph-0110123)
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Fortunately, there are smart ways to do this (Pasca  ud and Zomer LAL-95-05)

Define matrices M =102 X2 Cp=lo2x°
2 dp, 9p, 2 dp; ds,

Then M expresses the variation of  x2 wrt the theoretical parameters,
accounting for the statistical errors, and C expres ses the variation of x2 wrt
theoretical parameters and systematic uncertainty p arameters.

Then the covariance matrix accounting for statistic al errorsisV P =M1 and the
covariance matrix accounting for correlated systema tic uncertainties is

Vprs = M-ICCT M-1- The total covariance matrix V. 't = VP + \/ps s used for the
standard propagation of errors to any distribution F which is a function of the
theoretical parameters

<6%.>=T 2, 2,0F V, ™ aF
a_pj d pk
Where T is the 2 tolerance, T = 1 for the OFFSET method.

This is a conservative method which gives predictio ns as close as possible to
the central values of the published data. It does n ot use the full statistical
power of the fit to improve the estimates of s, since it chooses to distrust that
systematic uncertainties are Gaussian distributed.



There are other ways to treat correlated systematic errors- HESSIAN method
(covariance method)

Allow s , parameters to vary for the central fit. ~ The total covariance matrix is
then the inverse of a single Hessian matrix expressing the variation of x2 wrt
both theoretical and systematic uncertainty parameters.

If we believe the theory why not let it calibratet  he detector(s)? Effectively the
theoretical prediction is not fitted to the central values of published experimental
data, but allows these data points to move collectively according to their
correlated systematic uncertainties

The fit determines the optimal settings for correl ated systematic shifts such
that the most consistent fit to all data sets is ob tained. In a global fit the
systematic uncertainties of one experiment will correlate to those of another
through the fit

The resulting estimate of PDF errors is much smalle  r than for the Offset
method for Ax2 =1

We must be very confident of the theory to trust it for calibration — but more
dubiously we must be very confident of the model choices we made in setting
boundary conditions

We must check that |s ,| values are not >>1, so that data points are not sh ifted
far outside their one standard deviation errors - Data inconsistencies!

We must check that superficial changes of model choice (values of Q?,, form of
parametrization...) do not result in large changes of s,



Technically, fitting many s , parameters can be cumbersome

CTEQ have given an analytic method CTEQ hep-ph/0101032,hep-ph/0201195

X2 = Zi [FiQCD(p) - F, MEAS]2 - B A-1B
(O-iSTAT) 2

where

By = 2; A, % [F; °°P(p) — F; MEAS] A =0y t 2, Ay > A,

(O-iSTAT) 2 (o-i STAT) 2

such that the contributionsto 2 from statistical and correlated sources can be
evaluated separately.

The problem of large systematic shifts to the data points now becomes manifest
as a large value of BA -1B — the correlated systematic error’s contribution t o the 2.

A small overall value of ¥2 can be obtained by the cancellation of two large
numbers .

Is this acceptable? What can be done about this?



.Some data sets incompatible/only marginally
compatible?

60 - Towlet@idel)

One could restrict the data sets to those which 2
are sufficiently consistent that these problems S
|

N><

Total (2097 pts)

CDF1B jet (31 pts),”
40

do not arise — (H1, GKK, Alekhin)

20 =

But one loses information since partons need 00 6t (62 0
constraints from many different data sets —no- —» oo L °r D
one experiment has sufficient kinematic range / 0116 0118 012 0122 0116 0118 012 0122
flavour info . 140 80
.
To illustrate: the x2 for the MRST global fitis i1 | =@ ol
.. : 8 --~"" "BCDMS R (155 pts)
plotted versus the variation of a particular S // R
parameter (a, ). =
... . ] 80 - 20 BCDMS FP (167 pts)
The individual x2, for each experiment is also | | | |
plotted versus this parameter in the %0116 0118 012 0122 0116 0118 012 0422
neighbourhood of the global minimum. Each 40
experiment favours a different value of o, 2 |Lamcrrazepms) 21 corre qaps
o _ _ s 2 SLAC F,"(53 pts) CCFR xR (105 pts) .-~~~
PDF fitting is a compromise. Can one evaluate T | 0 ( |
. ed <), H1 (400 pts
acceptable ranges of the parameter value with "< | S#R®" 0 = s
. .. ] >~ NMC R}’ (126 pts) ZEUS (272 pts)
respect to the individual experiments? e

40 —

-40
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illustration for eigenvector-4 CTEQ look at eigenvector
07 combinations of their parameters

rather than the parameters

30

20| % s & 3 Q@ % 0 B Q) themselves. They determine the
@ 23 % I N2 o i 3 @ | 90% C.L. bounds on the distance
I ; + t . from the global minimum from
- ‘ I P(x:2 N,) dx.2=0.9

i s s for each experiment

-20}

~30 |

This leads them to suggest a modification of the X2 tolerance, Ax2 = 1, with which errors are
evaluated such that Ax2 =T2, T = 10.

Why? Pragmatism. The size of the tolerance T is set by considering the distances from
the x2 minima of individual data sets from the global minimum for all the eigenvector
combinations of the parameters of the fit.

All of the world’s data sets must be considered acc eptable and compatible at some level,

even if strict statistical criteria are not met, si nce the conditions for the application of strict
statistical criteria, namely Gaussian error distrib utions are also not met

One does not wish to lose constraints on the PDFs by dropping data sets, but the level of
Inconsistency between data sets must be reflected i n the uncertainties on the PDFs.



Compare gluon PDFs for Hessian and Offset methods fo  r the ZEUS fit analysis

. 2
Q'=7GeV* Q*=2.5GeV

Q*=2.5GeV*

Q*=2.5GeV*

(=)
T T T T T T T T T

Q*=200GeV* Q?=200GeV? Q*=200GeV?

o
T T T T T T T T T
T T T T EEEEEEREEEE R R

Offset method Hessian method T=1 Hessian method T=7

The Hessian method gives comparable size of error b and as the Offset method,
when the tolerance israisedto T ~7 — (similar ball park to CTEQ, T=10)

Note this makes the error band large enough to encompass reasonable variations of
model choice. (For the ZEUS global fit V2N=50, where N is the number of degrees of
freedom)



Aside on model choices

We trust NLO QCD- but are we sure about every choic e which goes into
setting up the boundary conditions for QCD evolutio n? — form of
parametrization etc.

The statistical criterion for parameter error estim ation within a particular
hypothesis is Ax2 = T2 = 1. But for judging the acceptability of an hypoth esis
the criterion is that X2 lie in the range N £ V2N, where N is the number of
degrees of freedom

There are many choices, such as the form of the par  ametrization at Q 2, the
value of Q .2 itself, the flavour structure of the sea, etc., whic ~ h might be
considered as superficial changes of hypothesis, but the x2 change for these
different hypotheses often exceeds  Ax2=1, while remaining acceptably within
the range N + V2N.

In this case the model error on the PDF parameters usually exceeds the
experimental error on the PDF, if this has been eva luated using T=1, with the
Hessian method.



If the experimental errors have been estimated byt  he Hessian method with
T=1, then the model errors are usually larger . Use of restricted data sets also
results in larger model errors. Hence total error (model + experimental) can end
up being in the same ball park as the Offset method ( or the Hessian method
with T ~ 7-10).

H1+ZEUS
Sy - 5 4 H1 NLO-QCD fit
% 20 :_ Lraey *g=a®x" % Lx) L+ +ex)
‘-E-’n C FFN heavy-quark scheme
»17.5 :_ [ total uncert.
s STpAoeT: Comparison oZEUS (Offset)and
: ZELSNEO-OCD e H1(Hessian, T=1¢luon distributions —
125 i
: b Yellow band (total error) of H1
i exp. uncert.
10 ¢ // comparable to red band (total error) of
® ZEUS
75F D
i ///////////,/,,
f @56V Swings and roundabouts
25
0 )



Last remarks on the Hessian versus the
Offset method

As an experimentalist | am keenly aware
that correlated systematic errors are
rarely Gaussian distributed.

Further reasons to worry about the use
of the Hessian method with T=1

1. Alekhin’s plot hep-ph-0011002 & 0.02 L

0.018 |

Hessian T=1

0.016 [,
0.014 |

0.012 |

0.01 |

0.008 | | | | | | . |
20 30 40 50 60 70 80
Q% (GeVA)

Conclusion: an increased tolerance, Ax? = T2, T = 10, seems like a good idea!



2. It may be dangerous to let the QCD fit
determine the optimal values for the
systematic shift parameters.

SA parameters are estimated as different
for same data set when different
combinations of data/models are used
— different calibration of detector
according to model

Comparison of sA values determined using
a Hessian NLO QCD PDF fit to ZEUS
and H1 data with sA values determined
using a ‘theory-free’ Hessian fit to
combine the data.

Using Ax2=1 on the QCD fit to the
separate data sets gives beautiful small
PDF uncertainties but a central value
which is far from that of a QCD fit to the
theory free data combination.. So what
are the real uncertainties? —
Conclusion: an increased tolerance
Ax2 =T2, T~ 10, is a good idea!

Zeus sA | HERA HERA no
QCD fit theory fit

1 1.65 0.31

2 -0.56 0.38

3 -1.26 -0.11

4 -1.04 0.97

S -0.40 0.33

6 -0.85 0.39

7 1.05 -0.58

8 -0.28 0.83

9 -0.23 -0.42

10 0.27 -0.26




Diifferent uncertainty estimates on the gluon persis
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The general trend of PDF uncertainties

is that e i Sou
The u quark is much better known

than the d quark

The valence quarks are much better

known than the gluon at high-x

The valence quarks are poorly

known at small-x but they are not e

important for physics in this region

The sea and the gluon are well g O
known at low-x 5 ot \J
.‘E 0.2+ 1

. . a
The sea is poorly known at high-x, 5 (= -
but the valence quarks are more B ﬁ
I -0.4- ZEUS-JETS tot. uncert. T

important in this region

The gluon is poorly known at high-x

And it can still be very important for
physics e.g.— high ET jet xsecn

+ ——— CUTLOWEST-ET JET BI \ J‘—
——— FIX p3S, FREE p5S

.\l ——— INTRODUCE p4U, p4D
GRV Photon PDF

need to tie down the high-x gluon S e e e e e



Good news: PDF uncertainties will decrease before LHC comes on line
HERA-II and Tevatron Run-II will improve our knowledge

gluon fractional error

Y
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Example- decrease in gluon PDF
uncertainty from using ZEUS jet
data in ZEUS PDF fit.
Direct* Measurement of the Gluon
Distribution

ZEUS jet data much more accurate
than Tevatron jet data- small
energy scale uncertainties



Inputting data to a PDF fit needs a prediction for the cross-section which can be
easily obtained analytically —true for DIS inclusiv e cross-section. But many NLO
cross-sections can only be computed by MC and can t ake 1-2 CPU days to
compute. This cannot be done for every iteration of a PDF fit.

Recently grid techniques have been developed to inc  lude DIS jet cross-sections in
PDF fits (ZEUS-JETSs fit)

Separating PDFs From The Integral

*A NLO Cross-Section for DIS 1s normally calculated using MC by:

N 25\ P
w=> n-‘m{w] q(x,.0,)

2T

i

For events m=1....N, (w,,
q(x,0?) a PDF).
«Can instead define a weight grid in (x.Q%). which is updated for each event m:

is an MC weight,

; : Where i, j define a discrete

1) 1) ) e )

LV‘,- j — W, j = 5 W point in x.Q? space relating
o _ Lo the event.

*A PDF grid is also defined in x,Q? as g ;.

*(Cross-Section can be reproduced by combining the PDF and weight grids

after the Monte-Carlo run: D

W= ZZW[M Q(Q) ;.
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Also gives a nice measurement of
a(M,) = 0.1183 + 0.0028 (exp) = 0.0008 (model)

And correspondingly the

contribution of the

_ _ uncertainty on a (M) to the
From simultaneous fit of a,(M,) & PDF parameters uncertainty on the PDFs is

much reduced



*HERA now in second stage of
operation (HERA-II)
substantial increase in luminosity

possibilities for new measurements
_Gluon fractlonal error

0.4

HERA-II projection shows significant oz
improvement to high-x PDF uncertainties 3

Q% = 1000 Ge\? %

= relevant for high-scale physics
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Why are PDF’s important for the LHC?

At the LHC high precision (SM and BSM) cross section
predictions require precision Parton Distribution
Functions (PDFs)

PDF uncertainties affect discovery physics
Higgs cross-sections
high ET jets..contact interactions/extra dimensions

Precision PDFs are also needed for ‘standard candle’ SM
processes which are insensitive to

calibrate experiment
measure machine luminosity?



HERA and the LHC- transporting PDFs to hadron-hadron cross-sections

. . LHC parton kinematics
QCD factorization theorem for short-

distance inclusive processes

]_Dq E LI L) L B L I L1 B 1L BN N 1)) |||||T:q

X ,= (M/14 TeV) exp(y)
' F Q=M M= 10 TeV

1
ox = Z / dx;dxs fa(xl,p%) fb(Xzaﬂ%)
a,b 0

10" F 3
2 2
% Gabox (xl,x2, (bt} as (1), a(u§>,%,q—2)
HR HMp
where X=W, Z, D-Y, H, high-E; jets, o OF ;
and o iIs known o
* to some fixed order in pQCD and EW 10"
® in some leading logarithm |
approximation (LL, NLL, ...) to all orders N
via resummation !
DA f 10° -q e e
107 10® 16° 0™ 10 167 10 10
1 X
(9 X
Ps X5




(data-theory)/theory
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Example of how
PDF uncertainties
matter for BSM
physics— Tevatron
jet data were
originally taken as
evidence for new
physics--

(data-theory)/theory
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These figures show inclusive jet cross-sections compared to predictions in tHe™”
form (data - theory)/ theory

Something seemed to be going on at the highest E_ T

And special PDFs like CTEQ4/5HJ were tuned to describe it better- note the
guality of the fits to the rest of the data deteriorated.

But this was before uncertainties on the PDFs were seriously considered




(CDF data—theory)/theory
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Today Tevatron jet data are considered to
lie within PDF uncertainties. (Example
from CTEQ hep-ph/0303013)

We can decompose the uncertainties into
eigenvector combinations of the fit
parameters-the largest uncertainty is
along eigenvector 15 —which is
dominated by the high x gluon
uncertainty



2. O<y<l | 2F Ixy<2 /

do/dpy [nb/GeV]

1000 2000 3000 4000

1000 2000 3000 4000

1000 2000 3000 4000 5000
pT [GeV]

And we can translate the current level of PDF uncertainty into the
uncertainty on LHC jet cross-sections. This has consequences for
any new BSM physics which can be described by a contact
Interaction-consider the case of extra dimensions



Such PDF uncertainties on the jet cross sections compromise the potential
for discovery.

E.G. Dijet cross section potential sensitivity to compactification scale of
extra dimensions (M ) reduced from ~6 TeV to 2 TeV.

M_ =2 TeV, M_ =6 TeV, M_ =2 TeV,
no PDF error no PDF error with PDF error
-6 -6
0 F . 10L
10 -7_ 10 7L o
0 R 8§ 10
3 10 -sf
10 '9;- — _ _9; 10 9—
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Is there anything we could do about it?- we could use early ATLAS data to improve the
gluon PDFs - Use data at lower PT and higher n-where new physics is not expected



The grid technique has been extended to LHC high-ET  jet cross-sections

—
PDFE Fitting Using Pseudodata

*(rids were generated for the inclusive jet cross-section at ATLAS 1n the
pseudorapidity ranges O<n<l. l<n<Z, and 2<n<3 up to pT=3TeV (NLOIJET).

*In addition pseudodata for the same process was generated using JETRAD [4].

*The pseudo-data was then used in a global fit to assess the impact of ATLAS
data on constraining PDFs:

1 Li | I=-II'| 1 U TTET ! 1T FTTTay ! T A
0.2
- Q7= 100000 GeV* £7 Preliminary indications
. 015 s d ;
E = = suggest that ATLAS data
0.1 — S : :
- jﬁ’j - can constrain the high x-
0.05 H
‘_,3' e - gluon,
2 0 :
E = i T S R T T A i s ey =
2 00sf | R =
- 2 | ZEUS-JETS PD : :
= olE F s ¥ %t\ —  Systematic errors are
S = [ ] +ATLASJETS - VE e 3 i
2 o01sE = uncorrelated, 10fb-'=1 vear of
© : (10 fb-1, 10% syst.) 4 - : _
0.2 | \ = nominal data-taking at
N 1 1 1l 1 1 ! 1910 : [ A 1 1 I{-}_;EICI-I-I—E.B-]
10 1’ 10 107

X



Gluon Fractional Error

Effect Of Decreased Svstematic Errors On PDF Fits

Decrease (uncorrelated) Systematic errors
10%—5%
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*Decreasing the systematic errors (on the ATLAS experiment) creates a
significant improvement in constraining the PDFES.,

13
The reduced gluon uncertainties can then be used in background
calculations for new physics signals
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And how do PDF uncertainties affect the Higgs discovery potential?

Higgs at LHC
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Higgs from qq at LHC
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How about PDF uncertainties on SM processes?
W/Z production have been considered as good standard candle processes insensitive to
PDF uncertainties......? This is true WITHIN a PDFset

generator level But how about comparing PDFsets?
e il - 7 We actually measure the decay
I .ii=.;-;;Eiii"Iiliiiiillll||||"||“"'ii'llif;i;iiii. o lepton spectra
0.0 ,,=.::'I | oos | ,ff' Generate with HERWIG+k-factors
TV secton | 1T (checked against MC@NLO) using
R TR Ry CTEQ6.1M MRST2001
ATLFAST ’ PDFs with full uncertainties
gm ST . from LHAPDF eigenvec_tors_
e :"":":!i'i:il'iiii%iiill':;ii'-:". oo | [ At y=0 the total uncertainty is
cor £ M, | oos E ~ +6% from ZEUS
o oos ~ +4% from MRSTO1E
ooz £ ~ +8% from CTEQ6.1
°oT & electron 001 £ positron
1 SRSV B ) S S ZEUS to MRSTO1 central value
v v difference ~5%

To improve the situation we NEED to be
more accurate than this:~4%



Study of the effect of including the LHC W Rapidity distributions in global PDF fits
by how much can we reduce the PDF errors with early LHC data?

Generate data with 4% error using CTEQG6.1 PDF, pass through ATLFAST detector
simulation and then include this pseudo-data in the global ZEUS PDF fit Central

value of prediction shifts and uncertainty is reduc ed
BEFORE including W data FTER including W data

1.8

gﬁ

— — ol e -
lyl ° “ ’ ’ '

Lepton+ rapidity spectrum
data generated with CTEQ®6.1
PDF compared to predictions
from ZEUS PDF AFTER these
data are included in the fit

Lepton+ rapidity spectrum
data generated with CTEQ®6.1
PDF compared to predictions
from ZEUS PDF

Specifically the low-x gluon shape parameter A, xg(x) = x -, was
A =-.199 + .046 for the ZEUS PDF before including this pseudo-data
It becomes A =-.181 = .030 after including the pseudodata



The uncertainty on the W/Z rapidity distributions Is dominated by —- gluon PDF
dominated eigenvectors and there is cancellation in the ratios

Ay = (W - W)/(WH + W) Zy = ZIW* + W)

Remaining uncertainty comes from valence PDF related eigenvectors Well Known?
Gold plated?

We will measure the lepton asymmetry

Within each PDF set uncertainty in the lepton ~__ generator evel
asymmetry IS LESS than in the lepton rapidity N T s T an.
spectra, e.g about 2% for the asymmetry at - E,:: o =
y=0, as opposed to about 4% for the lepton o b é BZD
rapidity spectra themselves (using MRST2001 RS .
PDFS) s
However the PDF sets differ from each ATLFAST
other more strikingly- MRSTOland 0225 [

CTEQ6.1 differ by about 13% at y=0! o2 o =

But this is an opportunity to use ATLAS — o
measurements to increase knowledge of oons £ Te—

the valence PDFs at x~0.005 oot




How could you calculate the PDF uncertainty yoursel f for
a cross-section of interest?

-use the eigenvector PDF sets from LHAPDFV5.
http://hepforge.cedar.ac.uk/Ihapdf

A PDF fitresults in a set of parameters which fix the form of the PDF
parametrisations at the starting scale for evolution Q%=Q?, _few GeV2

and an error matrix V., describing the correlations between these parameters-
deriving from the experimental statistical and syst ematic errors.

The errors on the parameters can be propagatedtot he PDFs which are functions
of these parameters ( albeit very complex functions calculated through QC D
evolution for any Q 2> QZ2)) and obviously they can also be propagated to any
function of the PDFs- such as your cross-section
<AF*>= %2, 0F V, OF

a p, dp, -—-- thiswould be easierifV ; were diagonal

So diagonalise it and determine the eigenvalues and e  igenvectors

Clearly the eigenvectors are linear combinations of the original parameters and
the eigenvalues are the squared errors on these comb  inations . Some
eigenvectors are dominated by one parameter —e.g. C  TEQ eigenvector 15 by a
high-x gluon parameter



*The results of the fit are then summarised in one central PDF setand 2" N,
parameter sets for the errors, where N, is the number of PDF parameters

These parameter sets are obtained by moving up(+) or down(-) along the i=1,Npdf
eigenvector directions by the corresponding error.These moves are propagated back
to the original PDF parameters to create new PDF sets- (Si+) (Si-). The erroron a

derived quantity is then obtained from
AF2="7%%, ( F(Si+) — F(Si-) )

2-dim (i, j) rendition af d-dim (~16) PDF parameter space :
. : low # eigenvectors correspond

cerioury of cornstand ;{:.ﬂ!.”,}”; to ]EIgE eigeuvalms,
u; efgenvector in the l-direction well-determined directions
plit: point of lergest a; with tolerance T “y _
S global mermimun i high # eigenvectors correspond
to small eigenvalues, less
citaagonalization and well-determined directions

>

rescaling by

the frerarive method

o Hession ergemvector Dasis sels

fer) (I} 8

Original parameier basis Orthonormal eigenvector basis




But what if evaluating your cross-section involved running a
Monte-Carlo ?- not many calculations can be done purely analytica lly

The full PDF uncertainty for CTEQG61 involves 40 sub-sets (20 eigenvectors)

40 event samples would have to be generated to evaluate the PDF uncertainties
TOO LONG

The PDF re-weighting technique, is a useful tool to quickly evaluate the full

PDF uncertainties for many PDF sets, saving generation time.

Generate an MC event with one specific PDF set, say PDF set n.1
and one hard process scale (e.g Q=MW)
And two primary partons with flavours(flavl,flav2) and momentum fractions x1,

X2
(calculated at the Hard Process, before the PS in the backward evolution is applied in

the MC) according to the probabilities (i.e. xf) appropriate for PDF set n.1.

Evaluate the probability, i.e. xf, of picking up the same flavoured partons with the
same momentum fractions x1,x2, according to the probabilities appropriate for PDF
set n.2, at the same energy scale, i.e.Q.

Then take the Ratio:

EventWeight = Trorn2 (X, flavy, Qscale) - fope,, (X, flav,, Qscale)
fopen (X, flav,,Qscale) oo, (X%, flav,,Qscale)




PDF Weights for CTEQG61, ZEUSO02 from MRSTO2

(calculated using LHAPDFv3)

CTEQ61/MRSTO02

ZEUSO02/MRSTO02
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Does it work ?- seems OK for RAPIDITY distributions

WS ﬁ i H LI nali LHl
b W *Mﬁ”« E WW” N”HWHWN i

PDF Re-weighting: for rapidity Distributions good t

Events generated with
HERWIG+MRSTO02
and re-weighted

with CTEQ61

are compared to
Events generated with
HERWIG+CTEQ61

Relative difference
between Re-weighted
and Generated
distributions

Weighted mean
on all range

0 ~0.5%
and no evidence of a y-dependent bias.



Also seems to work for Pt distributions

doB,/dp;

U = E'T'Ec'g'él CTEQ61 % L .C;'.I'.I;(.Q.él CTEQ61 Events generated with
- Generated Re-weighted | ~ g Generated Re-weighted HERWIG+MRSTO02
e B from MRSTO02 » L " from MRST02  and re-weighted
oE with CTEQ61
T F are compared to
" “\W- T We Events generated with
F - HERWIG+CTEQ61
10 T 10735—
os [ 0.3 Relative difference
Lo b W- co W between Re-weighted
- T - Lt and Generated
0.4 °lE H || distributions
- o B L
02 | | % H l e WHH T }
et e N\
i LS T o2 £ " Weighted mean
—02 [ | | Hil SR T on all range
O | ‘50‘ - ‘WOO‘ H ‘150‘ | 200 6 50 100 150 200
Pr (GeV) P, (GeV)
PDF Re-weighting: for rapidity Distributions overal | good to better than 1%

but evidence of a slight Pt-dependent bias.



LHC is a low-x machine (at least
for the early years of running)

Low-x information comes from
evolving the HERA data

IS NLO (or even NNLO) DGLAP good
enough?

The QCD formalism may need
extending at small-x

BFKL In(1/x) resummation
High density non-linear effects etc.

(Devenish and Cooper-Sarkar, ‘Deep
Inelastic Scattering’, OUP 2004,
Section 6.6.6 and Chapter 9 for
details!)

Q (GeV)

LHC parton kinematics

M=10TeV

10

10°

10°

Lo



MRST have produced a set of PDFs derived from a fit without low-x data —ie do

not use the DGLAP formalism at low-x- called MRSTO3 ‘conservative partons’.
These give VERY different predictions for W/Z production to those of the

‘standard’ PDFs.

o MRST02

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

Q*=6466GeV’

MRSTO3




Differences persist in the decay lepton spectra and
asymmetry distributions

even in their ratio and

Reconstructed Electron Pseudo-Rapidity Distribution S (ATLAS fast simulation)
200k events of W*- -> e* generated with HERWIG 6.505 + NLO K factors

- MRSTO02

------ MRSTO3

0.2

MRSTO02

MRSTO3

Reconstructed e*- e- Asymmetry

-2 =1 o 1 2

Herwig MRSTO2 Recons tructed (AtIFast) e+ and e— Asymmetry

6 hours
running

Reconstructed e*

— MRST02

stes MRSTO3

- MRSTO02

------ MRSTO3




Note of caution. MRSTO3 conservative partons DO NOT describe the HERA data
for x< 5 10-3 which is not included in the fit which produces them. So there is no
reason why they should correctly predict LHC data at non-central y, which probe
such low x regions.

What is really required is an alternative theoretical treatment of low-x evolution
which would describe HERA data at low-x, and could then predict LHC W/Z
rapidity distributions reliably — also has consequences for pt distributions.

The point of the MRSTO3 partons is to illustrate that this prediction COULD be
very different from the current ‘standard’ PDF predictions. When older standard
predictions for HERA data were made in the early 90’s they did not predict the
striking rise of HERA data at low-x. This is a warning against believing that a
current theoretical paradigm for the behaviour of QCD at low-x can be
extrapolated across decades in Q2 with full confidence.

— The LHC measurements may also tell us something new about QCD



Summary

Parton distributions are extracted from NLOQCD fits to DIS data- But they are
needed for predictions of all cross-sections involving hadrons.

| have introduced you to the history of this in order to illustrate that it's not all
cut and dried- our knowledge evolves continually as new data come in to
confirm or confound our input assumptions

You need to appreciate the sources of uncertainties on PDFs — experimental,
model and theoretical- in order to appreciate how reliable predictions for
interesting collider cross-sections are.

At the LHC high precision (SM and BSM) cross section predictions require
precision Parton Distribution Functions

We will improve our current knowledge from the HERA data, and the Tevatron
data, before the LHC turns on

We can begin LHC physics by measuring ‘standard candle’ processes which
are insensitive to PDF uncertainties

We can even use early LHC measurements, at low scales where BSM physics
IS not expected, to increase precision on PDFs and thus improve limits for
discovery physics

But there is some possibility that the Standard Model is wrong not due to
exciting exotic physics, but because the standard QCD framework is not
fully developed at small-x, hence we may first learn more about QCD!



End lecture-2

Extras after here

Details on ZEUS-H1 ‘theory free’ combination
Details on LHAPDFvV5

More on low-x physics, what does it all mean etc...
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Here we see the effect of differences in the
data, recall that the gluon is not directly
measured (no jets)

The data differences are most notable in
the large 96/97 NC samples at low-Q2 The
data are marginally incompatible

Lessons from comparing ZEUS and H1-
they’re supposed to measure the same
thing!
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ZEUS analysis/H1 data
compared to
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Here we see the effect
of differences of
analysis choice - form
of parametrization at
Q2 _0etc



Combining ZEUS and H1 data sets

Combining the data sets could bring real advantages in decreasing the PDF errors, if
the differences in the data sets can be resolved.

Combine using a Hessian fit which is‘theory free’ assuming only that each
experiment is measuring the same ‘truth’

e.g. if each experiment measures ~300 data points for the same cross-section then
there are 600 data points and 300 free parameters for the true values plus~20
more free systematic uncertainty parameters sA for both experiments

 The techniqgue amounts to using each experiment to calibrate the other since they
have rather different sources of experimental systematics

* Once the fit is done the systematic uncertainties of the combined data points (set
by Ax2 = 1 for the averaging fit) are a lot smaller than the statistical errors-

e one can try a simple PDF fit to this combined data for which statistical and
systematic errors are combined in quadrature
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Fit to the ZEUS + H1 averaged inclusive cross
section data set

And this simple fit results in very small
experimental uncertainties on the PDFs

Compare to the published PDF shapes for H1
PDF 2000 and ZEUS-JETS-

Gluon is more ‘ZEUS-like’

d valence is not really like either
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(A.Glazov)
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—— H1 PDF 2000
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— Inclusive cross-section data
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Compare this PDF fit to the
H1 and ZEUS averaged

To a PDF fitto H1 and
ZEUS published inclusive
cross-section data NOT
averaged —done by the
HESSIAN method

The errors are comparable

But the central values are X
rather different

This is because the
systematic shifts determined
by these fits are different
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Q=10 GeV

—— ZEUS+H1 (Hessian)

|:| exp. uncert.

10t Y

X
\\\‘\\2\\‘\\\\‘\\\\‘\\\\

Q" =10 GeV

—— ZEUS+H1 (Hessian)
XUy, _

[ ] exp. uncert.
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systematic shift s, QCD ZEUS+H 1fit Theory free ZEUS+H1fit

zdl e eff 1.65 0.31
zd2 e theta_a -0.56 0.38
zd3 e theta b -1.26 -0.11
zd4 e escale -1.04 0.97
zd5 hadl -0.40 0.33
zd6_had?2 -0.85 0.39
zd7_had3 1.05 -0.58
zd8 had_flow -0.28 0.83
zd9 bg -0.23 -0.42
zd10 had flow b 0.27 -0.26
h2 Ee Spacal -0.51 0.61
h4 ThetaE_sp -0.19 -0.28
h5 ThetaE 94 0.39 -0.18
h7 H Scale S 0.13 0.35
h8 H Scale L -0.26 -0.98
h9 Noise Hca 1.00 -0.63
h10 GP_BG_ Sp 0.16 -0.38
hll GP_BG LA -0.36 0.97

A very boring slide- but the point is that it may be dangerous to let the QCD fit
determine the optimal values for the systematic shift parameters.

And using Ax2=1 on such a fit gives beautiful small PDF uncertainties but a central
value which is far from that of the theory free combination.. So what are the real
uncertainties? — Conclusion: an increased tolerance Ax2 = T2, T ~ 10, is a good
idea!



EXTras after here

Very easy to download the library and all PDFsets

Successor to PDFLIB- even has an interface LHAGLUE t o make it look alike
User manual AND examples and a C++ Wrapper

What makes it different from PDFLIB?

It also has information on the uncertainties on the PDFs- Eigenvector PDF
sets.

call InitPDFset(name)

call InitPDF(imem)......... .where imem=0 is the central PDF set
then Call evolvePDF(x,q,xf) returns the PDFs for input to your calculation at x and
g=sgrt(Q ?) (where xf(1,...6) gives d,u,s,c,b,t and xf(-1,..-6) giv es gbar)

Then call NumberPDF(Nmem), where Nmem=2*Npdf

And do imem=1,Nmem

Call InitPDF(Imem) to repeat the calculation for each eigenvector set

Where imem=1,2 gives up(+) and down(-) along eigenv  ector 1
imem=3,4 gives up(+) and down(-) along eigenvector 2 etc.....
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Before the HERA measurements most of the prediction s for low-x behaviour of
the structure functions and the gluon PDF were wron g

Now it seems that the conventional NLO DGLAP formalism works TOO WELL _
there should be In(1/x) corrections and/or non-linear high density corrections for
Xx<510-3



x 9(x,Q%)

I QCD Fits i ; * H196/97
20 - M (H1+BCDMS) total uncertainty | LOW-X 1§  Q=ISGeV « ZEUS9697
[ B (H1+BCDMS) exp. + «, uncert. r + BCDMS
[](H1+BCDMS) exp. uncertainty L6 - E665
I — (H1) T - NMC
15 g L4f
= L — ZEUSNLO QCD fit
|Q?=20 GeV? E 12 F [T tot. error
~ E 1]
10 - 5 |
- E 08 ]
| = Q=35 Ge¥
2 L
i 5 Sl
S g 04 F
© L
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5 -
e NT 0 Lol -
01 5—4 1073 1072 10! 0~ 0™ 10~ 10” 10" 1
v 1 momeniunm fraction x
=) _ (@) iy ; ; 2
T = m g PP @ P ) _[12NC1Y) 12 = e
At small x, Gluon splitting 5, In/ x) a,~ 1/In QA2
O 27, functions become
small z=xly P& —+— Pa=—=% o000

A flat gluon at low @ becomes very
dofz.R)  w(QY fldyd . 4 steepAFTER Q? evolution AND F
dnd - % f: ?Eﬂm@ ) becomesgjluon dominated

Xg(x,Q?) ~ x -\ F(X,Q%) ~ XS, As=Ag -¢€



2 [Q=27GeV’  [[QP=35GeV’ [Q=45GeV?

.
\:

| I N
Q=85 Ge¥®

ZEUS

04 GeV?

0.65 GeV?

-5 -3 -L
10 10 10 1
— ZEUS NLO QCD fit

:l tot. error

& ZEUS 9697
~ ZEUS BPET 97

11070 1

— ZEUSNLO-QCD Fit
(Prel) 2001 & FEIS SYX 95
[ 1 tot.error o E665
» BCDMS TN
= ZELUS 967

So it was a surprise to see F, steep at small x - for low Q?, Q2 ~ 1 GeV?

Should perturbative QCD work? a is becoming large - ajat Q?~ 1 GeV?is ~ 0.4



Need to extend formalism at small x?
The splitting functions ®x), n=0,1,2.....for LO, NLO, NNLO etc
Have contributions ®x) = 1/x [ g In" (1/x) + b, In™1 (1/x) ....
These splitting functions are used in evolutiodig/dInG ~ o dyly P(z) q(y,3)
And thusgive rise to contributions to the PDFa P (Q?) (In Q)4 (In 1/x) '

DGLAP sums-LL(Q%) and NLL(Q2) etc STRONGLY ordered in pt.
But if In(1/x) is large we should considieeading Log 1/x (LL(1/x))
and Next to Leading Log (NLL(1)x -BFKL summations

LL(1/x) is STRONGLY ordered in In(1/x) and can beatdered in pt

BFKL summation at LL(1/x) = xg(x) ~ x™* = Disordered gluon

_ ladders
A=04C,IN2~0.5
T But NLL(1/x) softens

— steep gluon even at moderate Q 2 this somewhat



Thesteep behaviour of the gluon is dedufredn

the DGLAP QCD formalism —

BUT thesteep behaviour of the low-x Sea can bé&' |

measuredrom

F,~x?, As=dInE
d In 1/x

Small x is high W, x=Q4/2p.q G/W-=. At
small x

6(y*p) = 412a F,/Q?
Fp~ X7 — 6 (v*p) ~ (W2
But o(y*p) ~ (W?) =1 —is the Regge
prediction for high energy cross-sections

a Is the intercept of the Regge trajectory
a =1.08 for the SOFT POMERON

Such energy dependence is well
established from the SLOW RISE of all
hadron-hadron cross-sectionsncluding
o(yp) ~ (W) 008

for real photon- proton scattering

0.5

e g NN LR I e TR
EEeRRNBr U oEs DOVsREEREBEEYE
4 RSB EEE 2 = S =% FEEEE=diic == afE
| TEIT YT Y F ¥ 99 T HNYICTYiTI WY SES
-~ @ ZEUS slope fit 2001 (prel.)
F2~xp"ff ~
Y — ZEUS QCD 01 (prel.) H; +
I ZEUS REGGE 97 {H *
L _*{H- + YEUS BP197
02 - . LEUS SVIX9S
L $-++ LEUS 9%6/97
L ) B665
L + 1 NALC
Loy ] BCDOLS
0.1 —\L#\g\ SLAC
- x = 0.0L
0 I 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIIII
1 10 10°
Q* (GeV?)

Does the steeper rise of 6 (y*p)
require a hard Pomeron?

What about the Froissart bound?



Furthermore if thgluon density becomes Colour Glass Condensate, JIMWLK, BK

large there maybeon-linear effects /
Gluon recombinatiog g - ¢ Iligh density /
Ieglon "
0~ a.2p?/Q? , -
g C'Iltl b?u
may compete witlyluon evolutiong - g ¢ T E .gﬁ__,f G
H oo
o~ d il 8 ‘ /
P Mg B T CCFM
wherep is the gluon density 5 %} E Theativeniisne DT Lp
~ Xg(X,Q2) —no.of gluons per In(1/x) fed| & | Medied.Bel
TIR2 nucleon size
_ _ _ ] DGLAP —
Non-linearevolution equations &LR J
; 2
Pxg(x,Q2) = R, xg(x,Q2) a2 81 [xg(x,Q2)F Higher twist 2« —
dinQ2dIn1/x 11 / 16QPR?
a; p a2 p2/Q?
The non-linear term slows down the
evolution of xg(x,Q?) and thus tames Extending the conventional DGLAP
the rise at small x equations across the x, Q2 plane
The gluon density may even saturate
(-respecting the Froissart bound) Plenty of debate about the positions

of these lines!



Do the data NEED unconventional
explanations ?

In practice the NLO DGLAP formalism works well
downto G~ 1 Ge\?

BUT below G~ 5 Ge\2the gluon is no longer steep at
small x — in fact its becoming negative!
XS(X) ~ X s, xg(x) ~ x ~Ad
Ag < As at low Q2, low X
We only measure , FXq
dF,/dInQ? ~ Pggxg
Unusual behaviour of dliInQ*> may come from

unusual gluoror fromunusual Pgg- alternative
evolution?. Non-linear effects?

We need other gluon sensitive measurements at
low X

Like F - but a fully model independent
measurement involves changing the beam energy

There are now plans to do this at the end of
HERA-II running

20

“Valence-like’ gluon shape

\ ZEUS
Q°=1 Gev? L
— ZRUS NLO QCD fit

7 Gev’?

B tot error

(cr., free)




data/NLO

[y

05 |

Look at the hadron final states..lack of pt ordering has its
consequences. But this has only served to highlight the fact that the
conventional calculations of jet production were not very well

n developed. There has been much progress on MC@NLO rather
than ad-hoc calculations (MEPS, ARIADNE CDM ...) e.g.

“  Forward jets with X, » x and k; 2 ~ Q? are suppressed for DGLAP
e evolution but not for kt disordered BFKL evolution

Data do not agree with DGLAP at LO or NLO, or with MEPS..but

Nz, agree with CDM (part of ARIADNE). This is not kt ordered but it is

not a convincing BFKL calculation either.

[ Energy Scale Uncertainty | 8_ :
— N—r r
BFKL Phase Space ] P i
B 10°- N
o g
......... © i
E 104 N
----- CDM
---------- MEPS o
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® ZEUS 96-97
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NLO PDF Uncertainty ]
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Q2=2Ge\2

1[] T ||||||1 T ||||||1 T ||||||‘ T ||||||‘ T TTTTHT []-:-\ I II”"‘ T II“”‘ T I“I"‘ ! II""‘ LTI
o Q=2 Gev- Q=2 Gev*
e NN L Gavoragsd PINTCN Guverug e
fhaiied : Fr . nd = o ]
= -=- NN U fexrremnes) —omeme NNLOexrremes)
N WL ’
------------ Lia

Xg(x)" -

The negative gluon The corresponding s NOT
predicted at low x, low & negative at @~ 2 Ge\? — but
from NLO DGLAPremains has peculiar shape

at NNLO (worse)

The use of non-linear evolution equations can also
improve the shape of the gluon at low x2 Q

The gluon becomes steeper (high density) andghe s
guarks less steep

But this doesn’t really prove anything

2 R AL BRI R R
(=2 Gev*
R MELY 1t —
______ ML NIl
................... It
...... Lertit
0 e N
Bl N
ol N

Including In(1/x)
resummation in the
calculation of the splitting
functions (BFKL "inspired’)
can improve the shape - and
the x?2 of the global fit
improves



The use of non-linear evolution equations also QP=1.4GeV

improves the shape of the gluon at low x2 Q e = o\
The gluon becomes steeper (high density) andethe s X9 f T g XU
guarks less steep iy, ;
Non-linear effects gg- g involve the summation of N \\\ o
FAN diagrams- higher twist XU g | % g xd
;:_0"«“ XC
£000008, i
520000008, v

xr xr

Non linear

DGLAP

But this doesn’t really prove anything



Small x is high W, x=Q42p. /W2
Linear DGLAP evolution doesn’t work for \ J Q@l2p.q Q

Q?< 1 GeV2, WHAT does? — REGGE ideas? /c:> p2= W2
<[ @soamsGev' [ QTonee’ [ @P-0asGevt | Q7020 GV O(py*p) ~ (W?) «1 - Regge prediction for
S g i g high energy cross-sections
@’ 05" - - L a is the intercept of the Regge trajectory
o e e e R e a=1.08 for the SOFT POMERON
dg:) li a - - Such energy dependence is well
05 g g g established from the SLOW RISE of alll

PR A A AT Al hadron-hadron cross-sectionsncluding

FQ*=0.90GeV: [ Q®=130GeV: [ Q°=190GeV: [ Q’=270GeV’

2
(]

F

PQCD region

s : : : a(yp) ~ (WP) 0.08 |
- - - Y for real photon- proton scattering
il ! S DR For virtual photons, at small x
= s ;Q =3.50 GeV ;Q =4.50 GeV ;Q =6.50 GeV * ZEUSBPT9T O—(y*p) = 4ATRq, |:2
. . F W A ZEUS 96/97 >
1 - - \ o E665 Q
[ } [ h [ T ¢ SLAC
ol g g o = 0~ (W2)ul=F,~x1e=x"A
o NL N LN — zmusQepot prely 2 )
M o 0 - ZEUS Regged? so a SOFT POMERON would imply

A =0.08 qgives only a very gentle rise
of F,at small x

For & > 1 Ge\? we have observed a
much stronger rise.....



ZEUS

e ZEUSBPT97 1o E665 — ZEUSQCDO1 (prel.)
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The slope of Fat small x , E~x ", is
equivalent to a rise af(y*p) ~ (W2)>
which is only gentle for &< 1 Ge\?

0.3 f
0.25
0.2f
015
01f
0.05 |

045 |-
0.4
035

QCD
- Improved
:'“ | dipole
| GBW
{ dipole
10 10 10 &(Gev?

Regge region pQCD generated slope

So is there &ARD POMERON
corresponding to this steep rise?

A QCD POMERON(Q?) —1 =A(Q?
A BFKL POMERON,a0—1=A =0.5

A mixture of HARD and SOFT Pomerons to
explain the transition ©= 0 to high @?

What about the Froissart bound ? — the rise
MUST be tamed — non-linear effects?



Dipole models provide a way to model the ZEUS
transition @G=0 to high G : ZEUS SVTXOS . 78US Regge?
= A ZEUS 96/97 0 E665 = ZEUS yp96 (prel.)
At low X, y* = qg and the LONG LIVED (qq) £ ¢ o even
dipole scatters from the proton ER 5 Z
14 T T ® 2
© 105, R D =
. L B 3 @
o(Y*P) | oam e =
Y L R S @
M e T, =~ T
I I M «19 R SO 8 %
The dipole-proton cross section depends on the 3% . "= S>
. . . . Y &e S, o
relative size of the dipole-1/Qto the separation T )
of gluons in the targeg, PR iy
: ") © W) e (%
a1 [kl 2 g;
i @)
P * ¢ o
| s o T | .
+ " 1 ﬂ 0t | T
— 2 2 A~ . QUGeV)
0 =04(1 — exp(—#/2Ry(x)?)), Ry(x)* ~(xXp*~1/xg(x)  But o(y*p) = 4me? F, is general
Q? (at small 3

'R, small= large G, x /R, large= small Q2, x
o ~r~1/@ 0 ~ 0, = Saturation of the
dipole cross-section

GBW dipole model

o(yp) is finite for real photons ,
Q2=0. At high @, F, ~flat (weak
InQ? breaking) anay(y*p) ~ 1/Q?
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T =Q2R (X L ]
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T is a new scaling variable, applicable at small x
It can be used to define a "saturation scal&,=Q/R,(x) = x * ~x g(x), gluon density
- such that saturation extends to highéa®x decreases

Some understanding of this scaling, of saturatrmh@ dipole models is coming from work on
non-linear evolution equations applicable at highsity— Colour Glass Condensate, JIMWLK,
Balitsky-KovchegovThere can be very significant consequences for @igdrgy cross-sections
e.g. neutrino cross-sections — also predictionsiéavy ions- RHIC, diffractive interactions —
Tevatron and HERA, even some understanding of saftdnic physics



