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Hard processes in Hadron-Hadron collisions
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Jet Physics in SM and Beyond

3 SM Physics with jets
jet production ⇒ QCD at large energy scales

3 SM Physics of jets
jet structure ⇒ QCD at small energy scales

3 QCD and jets are the key to New Physics
3 new physics is likely to be born in a QCD process
3 new physics often results in jets in final states
3 most of time QCD is major backgound

Theoretically, QCD is a challenge
7 at large energies where αs is small
7 at low energy scales where it is large

Experimentally, jets are a challenge
7 suffer large uncertainties - algorithm, calorimeters, . . .

7 contaminate other tools such as γ, e, Emiss
T , . . .
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Typical jet event
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Kinematics in Hadronic Collisions

particle

θ

h1 h2

• Rapidity (y)

y ≡ 1
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E − pz
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1 + β cos θ
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• Pseudo-rapidity η
In the high energy limit, β → 1 or m → 0 then,

η ≡ 1

2
ln

(

1 + cos θ

1 − cos θ

)

= − ln (tan (θ/2))
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Kinematics in Hadronic Collisions

• Transverse energy ET

E2
T = m2 + p2

x + p2
y = m2 + p2

T = E2 − p2
z

pT = p sin θ

pz = E tanh y = ET sinh y

E = ET cosh y

For massless particles, ET → pT

• Invariant Mass

M2
12 = (p1 + p2)

2 = m2
1 + m2

2 + 2(E1E2 − ~p1 · ~p2)

For massless particles,

M2
12 → 2ET1ET2(cosh∆η − cos∆φ)
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Typical 2 → 2 scattering event

Two clear jets, separated in azimuth by π radians
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Kinematics for 2 → 2 scattering

η*

-η*

CM η1

η2

LAB

η∗ =
1

2
(η1 − η2), ηboost =

1

2
(η1 + η2), ηLAB = η∗ + ηboost

ET1 = ET2
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Kinematics for 2 → 2 scattering

To orient ourselves in the η1 − η2 plane, we first focus on the allowed
phase space in terms of η1 and η2. At lowest order, the jet
pseudorapidities are directly related to the parton fractions by

x1 =
ET√

s
(eη1 + eη2) , x2 =

ET√
s

(

e−η1 + e−η2

)

.

Since the momentum fraction cannot exceed unity, we find,

− log

(

2 − xT exp(−η1)

xT

)

< η2 < log

(

2 − xT exp(η1)

xT

)

,

and,

|η1| < cosh−1

(

1

xT

)

,

where xT = 2ET /
√

s and x2
T < x1x2 < 1.

Exercise: prove these boundaries on η1 and η2
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Phase space for 2 → 2 scattering
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Phase space boundary for
jets of ET = 100, 200 and
400 GeV at √s = 2 TeV

• As ET increases, the
allowed phase space
shrinks.

• for η1 ∼ −η2, the energy
of the particles
approaches the beam
energy

• for η1 ∼ +η2, M2
12 ∼ 4E2

T

Jets at Hadron Colliders – p.10



Phase space for 2 → 2 scattering

Kinematics determined by
ET , η1 and η2.

⇒ observe triple differential
cross section d3σ/dET dη1dη2

ET, η1, trigger jet

ET, η2, probe jet

Many different observables;
• Single jet inclusive ET

distribution
• Same-side to Opposite-

side jet ratio
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Cross section for jet production

In terms of the natural kinematic variables, the cross section for two
jet production at leading order is given by

d3σ

dET dη1dη2

=
1

8π

∑

ij

x1fi(x1, µF ) x2fj(x2, µF )

× α2
s(µR)

E3
T

|Mij(η
∗)|2

cosh4 η∗
,

where
fi(x, µF ) (i = g, q, q̄) represents the density of parton i in the
proton at factorisation scale µF

|Mij|2 is the lowest order squared matrix element for
ij → 2 partons summed and averaged over initial and final state
spins and colours.

• For parton-parton scattering, many subprocesses contribute;
qq → qq, qq̄ → qq̄, qg → qg, gg → gg, etc etc;
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Spin averaged lowest order matrix elements

The matrix elements for

a(p1) + b(p2) → c(p3) + d(p4)

averaged (summed) over initial (final) state colours and spins

Process
∑

|M |2/g4

qq̄ → q′q̄′ 4
9

u2+t2

s2

qq̄ → qq̄ 4
9

(

u2+t2

s2 + u2+s2

t2

)

− 8
27

u2

st

qg → qg u2+s2

t2
− 4

9
u2+s2

su

gg → gg 9
2

(

3 − ut
s2 − us

t2
− ts

u2

)

where s = (p1 + p2)
2, t = (p1 − p3)

2 and u = (p2 − p3)
2 are the

Mandelstam variables.
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Spin averaged lowest order matrix elements

The matrix elements for other processes are obtained by crossing -
e.g.

∑

|M |2qq̄′→qq̄′(s, t, u) =
∑

|M |2qq̄→q′q̄′(t, s, u)

since we make the exchange q ↔ q′, p2 ↔ −p3 or s ↔ t.

Exercise: find expressions for ∑ |M |2qq̄→gg and ∑ |M |2gg→qq̄
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Spin averaged lowest order matrix elements

In fact, all of the various ma-
trix elements have very simi-
lar shape. we see that

∑

|M |2gq→gq +
∑

|M |2gq→qg

∼ 4

9

∑

|M |2gg→gg

and similarly for quark initi-
ated processes

⇒ The single effective sub-
process
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The single effective subprocess

Can write the lowest order cross section approximately as

d3σ

dET dη1dη2

∼ 1

8π
x1F (x1, µF ) x2F (x2, µF )

× α2
s(µR)

E3
T

|Mgg→gg |2
cosh4 η∗

,

where F (x, µ) is the single effective parton density,

F (x, µ) = g(x, µ) +
4

9

∑

q

(q(x, µ) + q̄(x, µ)) .

The sum over parton subprocesses is accounted for by F (x, µ).
⇒ Can understand jet cross sections at lowest order in terms of
3 Gluonic matrix elements
3 F (x, µ)
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Gluonic matrix elements

The parton-parton sub-
process scattering matrix
elements are independent of
ηboost so the only variation
is with the centre-of-mass
rapidity η∗,

|Mgg→gg |2
cosh4(η∗)

=
9π2

8

(4 cosh2(η∗) − 1)3

cosh6(η∗)
.

As |η∗| gets large, t (or u) →
0 and we approach the regge
limit.
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Parton luminosity

The parton-parton luminosity
in the single effective subpro-
cess approximation as a func-
tion of ηboost for different |η∗|
values (ET = 100 GeV and√

s = 2TeV). This corresponds
to diagonal strips across the
η1 − η2 plane.
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|eta^*| = 0
|eta^*| = 1
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As expected, the largest luminosity occurs when x1 and x2 are
equally small, η∗ ∼ ηboost = 0. As either |ηboost| or |η∗| increases, the
luminosity decreases rapidly. However the falloff is more rapid with
increasing |η∗| than with increasing |ηboost|.
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The unphysical scales - µR

The renormalisation scale µR is introduced when redefining the bare
fields in terms of the physical fields at scale µR. It is unphysical -
and the answer shouldnt depend on it - but does because we work at
a fixed order in perturbation theory. Therefore, you can choose any
value (within reason). Typical values are the hard scale in the
process µR ∼ ET .

0 100 200 300 400 500

E_T (GeV)

0

0.5

1

1.5

2

Ra
tio

mu_R = 100 GeV
mu_R = E_T/2
mu_R = 2 E_T

α2
s for various values of µR

compared to µR = ET
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The unphysical scales - µF

The factorisation scale µF is introduced when absorbing the
divergence from collinear radiation into the parton densities. It is
unphysical - and the answer shouldnt depend on it - but does
because we work at a fixed order in perturbation theory. Typically,
we think of radiation at a transverse scale > µF as being detectable
so that µF ∼ ET is a reasonable choice.
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mu_F = 2 E_T The effective parton-parton
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ues of µF compared to µF =
ET at η1 = η2 = 0
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Gluon v Quark contribution
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s
Mostly gluon initial state at low xT and quark initiated at large xT .
At xT ∼ 0.5, gluons responsible for 20% of cross section.
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Scaling cross section

The scaled cross section is independent of √s

E3
T

d3σ

dET dη1dη2

∼ 1

8π
x1F (x1, µF ) x2F (x2, µF )

× α2
s(µR)

|Mgg→gg |2
cosh4 η∗

0 0.1 0.2 0.3 0.4 0.5

x_T

0.8

1

1.2

1.4

1.6

1.8

2

Ra
tio

QCD
Scaling

Ratio of E3
T d3σ/dET /dη1/dη2

at η1 = η2 = 0 for√
s = 630 GeV and√
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s.

Scaling violations due to
strong coupling and evolution
of parton densities.
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Dijet angular distribution

Can also work in terms of the dijet mass MJJ and the centre-of-mass
scattering angle θ∗

M2
JJ = 4E2

T cosh2 η∗, cos θ∗ = tanh η∗, t = −s

2
(1 − cos θ∗)

d3σ

dM 2
JJd cos θ∗

∼
∫

dx1dx2F (x1, µF )F (x2, µF ) δ(x1x2s − M 2
JJ)

× α2
s(µR)

32πM 2
JJ

|Mgg→gg|2

at small t (large cos θ∗)

|Mgg→gg |2 ∼
(s

t

)2

∼ 1

(1 − cos θ∗)2
,

the classic Rutherford scattering behaviour for the exchange of a
massless vector boson in the t-channel.
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Dijet angular distribution
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QCD An even better variable is

χ = e2η∗

=

(

1 + cos θ∗

1 − cos θ∗

)

that removes the singular be-
haviour as t → 0, cos θ∗ → 1

dσ/dχ for MJJ = 200 GeV,
ηboost = 0 and √

s = 2 TeV.
Scaling violations due to
strong coupling and evolution
of parton densities.
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Jet algorithms

So far, at leading order the jet
is represented by a single par-
ton.

⇒ it doesnt matter what the jet definition is... (unless we deal with
multiparton configurations and we want to separate the partons)
⇒ motivations for higher order corrections are to
• improve the matching between theoretical and experimental jets
• reduce the dependence on the unphysical scales
• identify kinematic regions where logarithms are large
• model radiation outside of the jet
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Structure of NLO

Example, pure gluon ingredients to pp → 2 jets

• 1 loop, 2 parton final state

Same kinematics as leading order - single parton ≡ jet
• tree level, 3 parton final states

or 2+1 parton final state

Different kinematics - extended phase space and now have the
possibility of partons combining to form jet

⇒ sensitivity to jet algorithm
- size of jet and way in which
momenta are combined

• Note both contributions are divergent and it is a technical issue
to cancel the divergences and make finite physical predictions
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NLO phase space

• The parton fractions are given by

x1,2 =
ET1√

s

„

exp(±η1) +
ET2

ET1

exp(±η2) +
ET3

ET1

exp(±η3)

«

,

where ET1 > ET2 ≥ ET3.
• Since the transverse energies of the partons are no longer

forced to be equal, |η2| may increase to compensate for having a
smaller transverse energy,
ET2/ET1 < 1.

• The maximum possible values of |η2| occur when ET2 = ET3,

− log

 

aā +
√

a2ā2 − aā

a

!

< η2 < log

 

aā +
√

a2ā2 − aā

ā

!

,

where

a =
(2 − xT1 exp(η1))

xT1

ā =
(2 − xT1 exp(−η1))

xT1
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NLO phase space

• The maximum allowed
value of |η1| is
unchanged at
next-to-leading order

• Adding more partons
into the final state further
increases the allowed η2

range corresponding to
the production of more
and more soft partons.

• The physical cross
section will exhibit a
rather sharp cutoff as |η1|
increases.

• There will be a more grad-
ual fall off in the cross
section as |η2| increases.
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NLO matrix elements

The matrix elements for

a(p1) + b(p2) → c(p3) + d(p4) + e(p5)

averaged (summed) over initial (final) state colours and spins are

|Mqq′
→qq′g|2 =

4

9
g6

„

s2 + s′2 + u2 + u′2

tt′

«

× (2CF ([14] + [23]) +
1

N
(2[12] + 2[34] − [13] − [14] − [23] − [24]))

where (since p5 6= 0) the primed and unprimed variables are different

s = (p1 + p2)
2, t = (p1 − p3)

2, u = (p2 − p3)
2

s′ = (p3 + p4)
2, t′ = (p2 − p4)

2, u′ = (p1 − p4)
2

and the eikonal factor
[ij] =

pi.pj

pi.p5 p5.pj

accounts for the coherent radiation of gluons from the quarksJets at Hadron Colliders – p.29



NLO matrix elements

In the limit that the gluon is either soft (p5 → 0) or collinear with one
of the quarks, the matrix element factorises

|Mqq′→qq′g|2 → |Mqq′→qq′ |2X

where X is a factor that contains the infrared singular terms and

|Mqq′
→qq′ |2 =

4

9
g4

„

u2 + s2

t2

«

For example, in the soft limit s′ → s, t′ → t and u′ → u so that by
trivial inspection,

X = 2g2

(

2CF ([14] + [23]) +
1

N
(2[12] + 2[34] − [13] − [14] − [23] − [24])

)

with the eikonal factor [ij] = pi.pj/pi.p5 p5.pj diverging in the p5 → 0

limit.
Soft factors like this dictate all interjet coherence phenomena
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Exercise

In the limit where p4 and p5 are collinear (so p4.p5 → 0), make the
replacements

p4 = (1 − z)p45, p5 = z p45

so that
s′ = 2p3.p4 → (1 − z)2p3.p45 = (1 − z)s

etc and
[i4] =

pi.p4

pi.p5 p4.p5

→ (1 − z)pi.p45

zpi.p45 p4.p5

=
1 − z

z

1

p4.p5

.

Hence show that

|Mqq′→qq′g|2 → |Mqq′→qq′ |2X

where (ignoring terms that do not diverge in the collinear limit)

X = CF g2 4

p4.p5

1 + (1 − z)2

z

— the splitting function for a quark to radiate a collinear gluon.Jets at Hadron Colliders – p.31



Overall effect of NLO corrections
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Moderate corrections away from phase space boundaries - identify
large logarithmic corrections at large η2 ⇒ resummation.
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Jet algorithm

Must be infrared safe:
• Infrared problem - adding an infinitely soft parton should not

change the number of jets

• Collinear problem - replacing any massless parton with an
exactly collinear pair of massless partons should not change
the number of jets

+ insensitive to hadronisation
+ insensitive to longitudinal boosts
+ simple to apply to higher orders and experiment
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Jet definitions

The transverse energy, ET , pseudorapidity, η, and azimuth, φ, of a jet
are given by:

ET jet =
∑

i∈jet

ETi,

ηjet =
∑

i∈jet

ETi ηi/ET jet,

φjet =
∑

i∈jet

ETi φi/ET jet.

We shall always use boost-invariant variables, so ‘angle’means the
Lorentz-invariant opening angle

Rij =
√

(ηi − ηj)2 + (φi − φj)2
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kT algorithm

• For every pair of particles, define a closeness

dij = min(ETi, ETj)
2R2

ij

(

≈ min(Ei, Ej)
2θ2

ij ≈ k2
⊥

)

.

• For every particle, define a closeness to the beam particles,

dib = E2
TiR

2.

• If min{dij} < min{dib}, merge particles i and j

• If min{dib} < min{dij}, jet i is complete.
These steps are iterated until all jets are complete. In this case, all
opening angles within each jet are < R and all opening angles
between jets are > R.
Note: not every particle within R of the jet axis is included - the cone
has a flexible edge.
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Cone algorithm

• For every seed tower sum all cells within angle R

• Recompute jet direction and iterate until stable jet direction
found

• If jets overlap, merge and split jet
Note that despite the use of a fixed cone of radius R, jets can contain
energy at angles greater than R from their direction, because of
merging procedure.

• At the NLO parton level, sometimes require that the two partons
must be within RsepR of each other — this is ad hoc parameter
not present in experimental algorithm.

• Midpoint or improved legacy cone algorithm – pseudo-seed
towers placed midway between jets with R < ∆R < 2R
corresponds to Rsep = 2.

• kT -algorithm corresponds to Rsep = 1.
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The single jet inclusive cross section
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The single jet inclusive cross section
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Scaling cross section
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Dijet angular distribution
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Jet shape

The jet shape can be defined as

Ψ(r; R) =

∑

i ETiΘ(r − Rijet)
∑

i ETiΘ(R − Rijet)

where the sum is over the particles in the jet.

r
R

jet axis
Ψ is the fraction of energy of
a jet of size R contained in a
sub-cone of size r so that

Ψ(R; R) = 1

Differential jet shape
weighted by r

ρ(r, R) =
dΨ(r, R)

dr
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Jet shape cont’d

There are two (perturbative) contributions

• Radiation inside the jet
modelled by collinear splitting

• Soft gluons falling into the cone
modelled by coherent soft radiation pattern
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Radiation in jet

The probability of final-state emission from a parton of type a

dPa =
1

2

∑

b

αs

2π

dθ2

θ2
dz Pa→bc(z),

where z is the fraction of a’s energy carried by b, and θ is the opening
angle between the partons.
The phase space limits come from the requirements that both
partons be within R of the jet axis, and the opening angle be less
than RsepR.
Doing the integration over z, we find for quark and gluon jets

Seymour hep-ph/9707338
rρq(r) =

CF αs

2π

»

2

„

−2 log Z − 3

2
(1 − Z)2

«–

,

rρg(r) =
CAαs

2π

»

2

„

−2 log Z − (1 − Z)2
„

11

6
− 1

3
Z +

1

2
Z2

««–

+
TRNfαs

2π

»

2(1 − Z)2
„

2

3
− 2

3
Z + Z2

«–

,

Z = r/(r + R) if r < (Rsep − 1)R and Z = r/RsepR otherwise
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Soft radiation from outside the jet

This is due to soft initial-state radiation that happens to be inside the
jet cone by chance,

dP = 4
Cαs

2π
dη

dω

ω
∼ 4

Cαs

2π
θdθ

dz

z

with colour factor C ∼ CF ∼ CA/2.
Applying the phase space limits gives

rρi(r) =
Cαs

2π

[

2r

(

1

Z2
− 1

)]

.

Initial radiation is insensitive to the jet direction, but this still gives a
finite contribution as r → 0. This is due to the fact that soft partons
anywhere in the jet will pull the jet axis away from the hard parton
direction.
Note: we are making small angle approximations so these simple
formulae will make an error at large values of R and Rsep.
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Shape of jet

Also expect power corrections and large infrared logarithms

KT algorithm — R = 1, Rsep =
1.

cone algorithm — R = 1,
Rsep = 2

The solid line is the resummed result including power corrections.
Seymour hep-ph/9707338
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Shape of jet
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Summary

3 Jet physics is extremely rich field with diverse phenomena
3 focussed on single and dijet production at high energies

⇒ probing QCD to ∼few 10−18 m (∼few 10−19 m at LHC)
7 didn’t have time for

multijet events
vector boson(s) + jets
heavy flavour jets
diffractive jet production
multiple parton scattering
· · ·

3 Understanding jet physics is key to understanding photons,
leptons, missing transverse energy
⇒ possible discovery on phenomena beyond the Standard
Model
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