The Standard Model (and small extensions)

Klaus Mönig

- Introduction
- Strong interactions
- Electroweak interactions
- Mixing in the quark sector
- The neutrino sector
- The Standard Model of cosmology
- Conclusions

Introduction

- The Standard Model describes the interactions of elementary particles
- Four interactions:
 - -electroweak (in principle two separate forces)
 - -strong
 - -gravitation

however gravitation cannot be included in the model

- The model describes successfully basically all data
- However the model has many problems why we think it cannot be the final theory
- Every test of the Standard Model should thus be seen as an attempt to find its limits

Gauge theories

Elementary particle physics is successfully described by local gauge theories

- ullet Take a gauge group ${\mathcal G}$
- The interactions (gauge bosons) are given by the generators of the group
- The fermions are arranged in multiplets on which the gauge bosons act
- The gauge group of the Standard Model: SU(3) × SU(2) × U(1) SU(3): strong interactions SU(2) × U(1): electroweak interaction Gravity is not included in the Standard Model
- In this scheme all particles have to be massless
- Masses can be generated breaking the symmetry

Fermions in the Standard Model

- Fermions exist in 3 families
- The families are identical apart from their masses
- Leptons have only electroweak interaction
- Quarks also have strong interactions

Leptons			Quarks		
Flavour	mass	Q	Flavour	mass	Q
	(GeV)			(GeV)	
$ u_e $	$< 1 \cdot 10^{-8}$	0	u	~ 0.003	2/3
e	0.000511	-1	d	~ 0.006	-1/3
$ u_{\mu}$	< 0.0002	0	С	1.3	2/3
μ	0.106	-1	S	~ 0.1	-1/3
$ u_{ au} $	< 0.02	0	t	175	2/3
au	1.78	-1	b	4.3	-1/3

Electroweak gauge bosons:

charged current: W^{\pm} $m_{\rm W} \sim 80 \,\text{GeV}$ neutral current: Z $m_{\rm Z} \sim 90 \,\text{GeV}$ γ $m_{\gamma} = 0 \quad \text{QED}$

Gauge group: $SU(2) \times U(1)$ with couplings g, g'

Fermions exist as left handed doublets and right handed singlets $SU(2) \begin{pmatrix} W^+ \\ W^0 \\ W^- \end{pmatrix}$ couple to left handed doublets only

U(1) B couples to left and right-handed fermions Up to here all particles are massless!

The Higgs mechanism

Complex Higgs doublet Φ with potential $V(\Phi) = \lambda (\Phi^* \Phi - v^2/2)^2$

- Minimum at $\Phi(0) = \begin{pmatrix} 0 \\ v \end{pmatrix}$
- $\bullet v = 246\,{\rm GeV}$ precisely known from muon decay

Gauge bosons acquire mass through coupling at Φ , absorbing 3 degrees of freedom in the longitudinal gauge boson components

Higgs mechanism requires one neutral scalar particle H^0 ,

Fermion masses are generated by ad hoc Yukawa couplings of the fermions to the Higgs field

The fermion mass term $m\overline{\Psi}_L\Psi_R$ couples left- and right handed particles

 W^0 and B mix keeping photon massless:

$$Z = W^{0} \cos \theta_{W} - B \sin \theta_{W}$$

$$\gamma = W^{0} \sin \theta_{W} + B \cos \theta_{W}$$

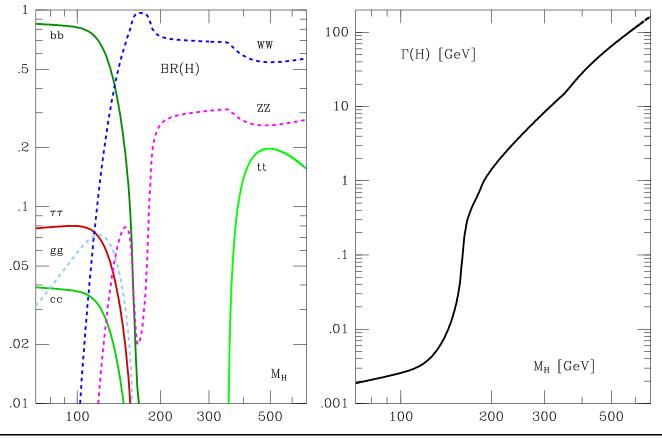
with $g \sin \theta_W = g' \cos \theta_W = e$

Resulting interactions:

 W^{\pm} : stay purely left handed

 γ : left-right symmetric vector coupling (Maxwell equations)

Z: complicated mixture of left- and right-handed coupling to restore the $SU(2)\times U(1)$ prediction


$$g_A = \frac{g}{2}$$
$$g_V = \frac{g}{2}(1 - 4|q|\sin^2\theta_W)$$

(Neutrinos: electrically neutral \Longrightarrow Z coupling pure left-handed \Longrightarrow right handed neutrinos would be sterile)

CTEQ School 2006

What do we know about the Higgs?

- In the Standard Model only one free parameter left $(m_{\rm H}^2 = 2\lambda v^2)$
- LEP searches: $m_{\rm H} > 114 \,{\rm GeV}$
- Higgs couples to mass \Rightarrow partial widths proportional to particle masses
- Coupling to massless particles via loops

The hierarchy problem

A "final" theory should be valid up to the Planck scale: $m_{\rm Pl} = \sqrt{\hbar c/G_N} \approx 10^{19}\,{\rm GeV}$

If the parameters (couplings, masses) are defined at the high scale, they receive radiative corrections running them down to the low scale

Radiative corrections in the SM: $\Delta m_{\rm H} \sim m_{\rm Pl}$

However Higgs mechanism works only if $m_{\rm H} < 1$ TeV (e.g. WW \rightarrow WW violates unitarity at $\sqrt{s} = 1.2$ TeV without a light Higgs)

 \Rightarrow enormous fine-tuning required!

Strong interactions

Strong interactions act only on quarks (\mathbf{Q}, \mathbf{Q})

Gauge group: SU(3)

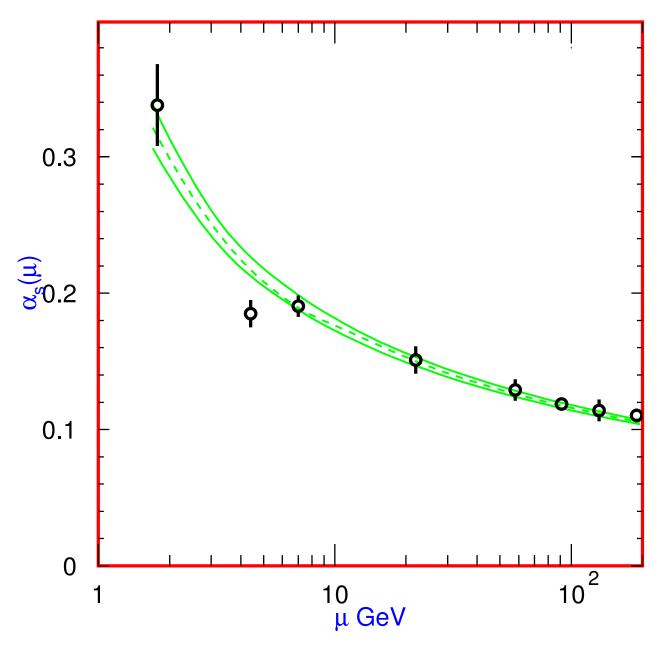
• Quarks have to come in triplets of 3 "colours"

• Exchange particles: 8 massless gluons

Running of coupling constants

Due to vacuum polarisation effects the coupling "constants" depend on the momentum transfer

Gauge-boson-fermion interaction: screening The coupling constants fall with falling energy


Gauge-boson self-interactions: enhancement The coupling constants rise with falling energy

Electroweak interactions: well behaved at $Q^2 \to 0$ with $\mathcal{O}(10\%)$ changes between 0 and 100 GeV

Strong interactions: coupling diverges for $Q^2 \to 0$

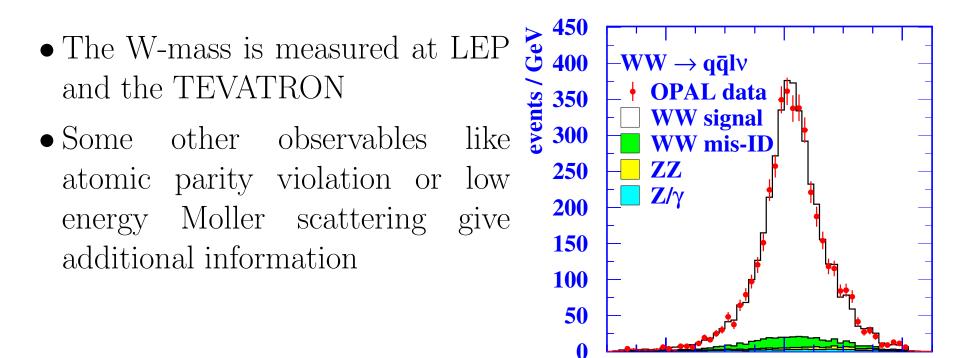
- quarks exist only in colour neutral states: quark-antiquark (mesons), 3 (anti)quarks (baryons) (confinement)
- "free" quarks and gluons are visible at high energy (asymptotic freedom)

Verification of running is a strong test of the gauge structure of QCD

Experimental tests of electroweak interactions

Gauge sector fully determined by three parameters: g, g', v

(In practise the three best measured parameters are used: $\alpha(0)$, $G_{\rm F}$, $m_{\rm Z}$) Can test the model if more than three observables are measured


Expect one-loop correction to be of order $\alpha \sim 1\%$

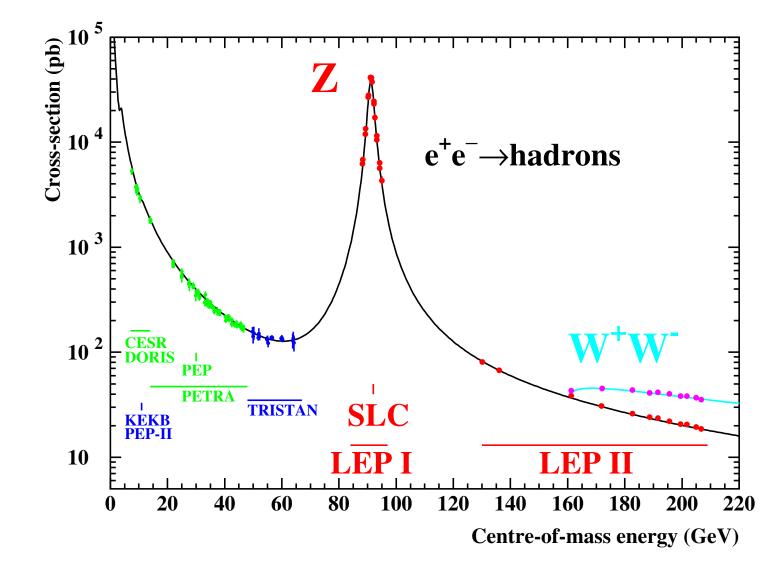
 \implies have to be taken into account of precision better than that

- quantities get sensitive to other parameters $(m_t, m_H...)$
- \bullet model is tested at the quantum level
- sensitivity to physics at higher scales

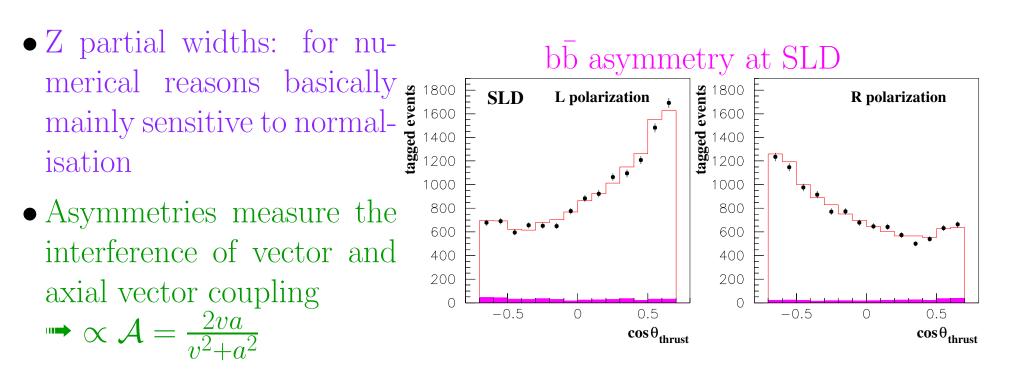
Electroweak observables

- The fermion sector is completely known (neutrino masses are irrelevant in this context)
- α and $G_{\rm F}$ are known with very good precision
- Many observables can be measured on the Z resonance

60


80

 $(m_{a\bar{a}}+m_{lv})/2$ (GeV)


100

Observables on the Z resonance

The Z-mass is given by the peak of the resonance curve

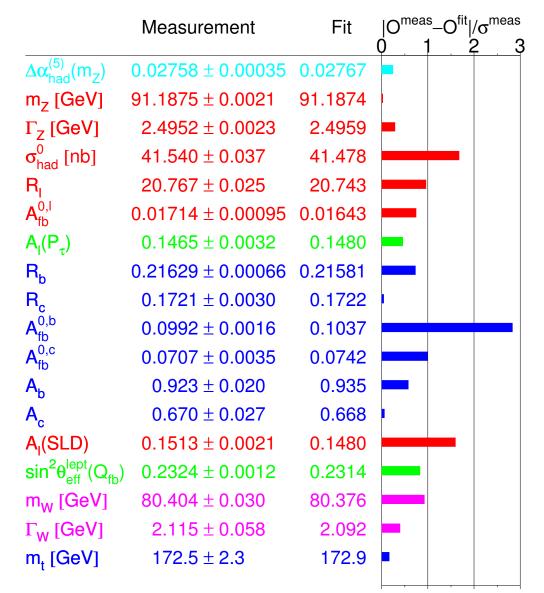
- All other observables (partial, total widths, asymmetries) can be expressed in terms of the vector and axial vector couplings of the Z to fermions
 - $-\operatorname{axial}$ vector coupling measures the total normalisation of the SU(2) coupling constant
 - –vector coupling is mainly sensitive to the Z- γ mixing, i.e. the weak mixing angle $(v/a=1-4Q\sin^2\theta)$

The structure of radiative corrections

Most Z-observables and $m_{\rm W}$ can be described with three parameters:

- $\Delta \rho$: total normalisation of the Z-fermion coupling
- $\sin^2 \theta_{eff}^l$: effective weak mixing angle
- Δr : Radiative corrections for $m_{\rm W}$
- (Only $Zb\bar{b}$ couplings are slightly special because of the heavy top)

In the SM there are two independent contributions:

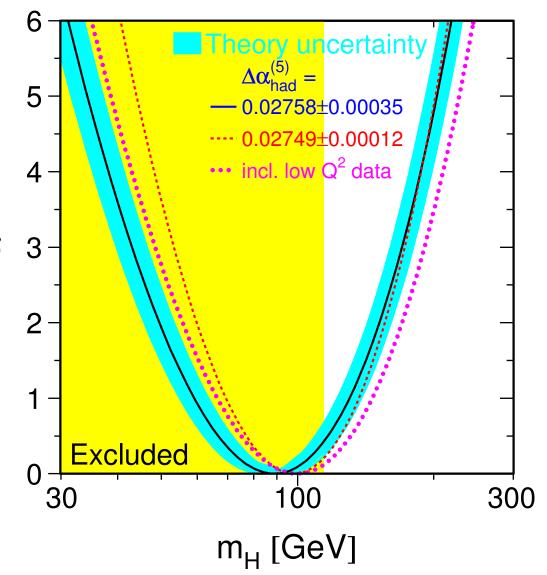

- A large term from isospin violation $\propto m_{\rm t}^2 m_b^2$
- \bullet A much smaller contribution $\propto \log m_{\rm H}/m_{\rm W}$

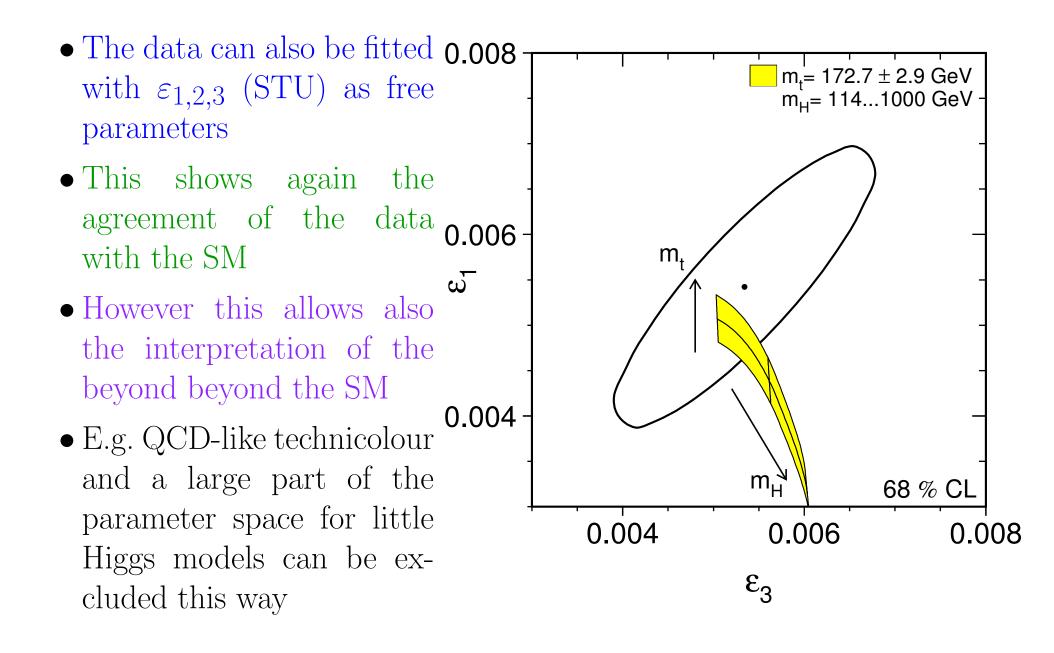
Reparameterisation:

- $\varepsilon_1 = \Delta \rho$ (or S): absorbs the isospin violating corrections
- ε_3 (or T): only sensitive to the logarithmic corrections
- ε_2 (or U): constant in the SM and most extensions (only m_W)

Electroweak fits

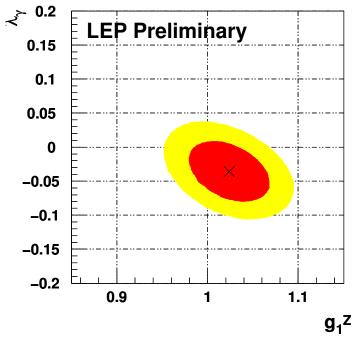
- All data are fitted simultaneously leaving $m_{\rm H}$ (+...) as free parameter
- The overall fit quality is good: $\chi^2/\text{ndf} = 17.8/13$
- All observables agree individually with the SM prediction after the fit

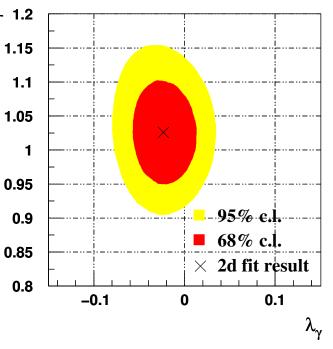

3


2

1

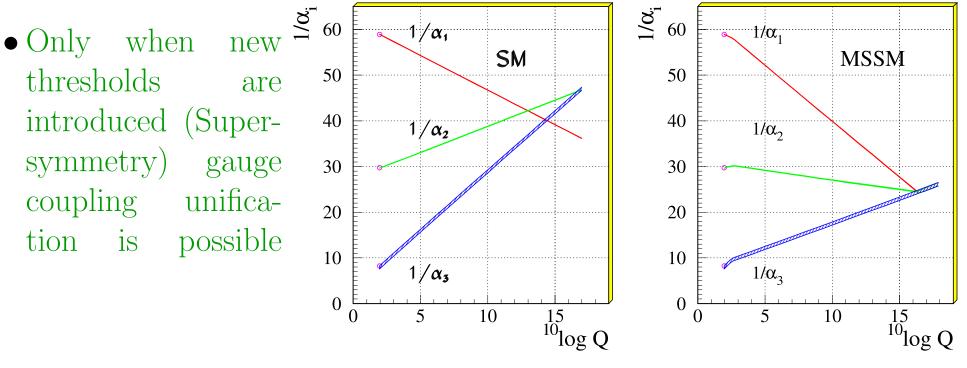
0


- Within the Standard Model the Higgs is predicted to be light
- A one sided 90% c.l. is ☆ around 200 GeV
- (This is perfectly consistent with SUSY)
- (Of course the limit is only valid within the SM)



Gauge boson self couplings

- The gauge boson couplings are uniquely defined by the structure of the gauge group
- A measurement of these couplings thus probes the gauge structure itself
- The WWZ and WW γ are usually described and terms of 5 parameters where only 3 can be measured independently at \checkmark LEP (no Z- γ separation)
- The measurements agree with the SM on the few % level
- Hadron colliders can separate the Z and the γ using WZ and W γ final states, however the precision is at present not competitive



Unification of Gauge Couplings

Why do we have 3(+1) forces in nature and not one?

- GUT theories assume one force at high scales which is broken down to three forces at the GUT scale
- This requires the three coupling constants to meet at some point
- The precision measurements of the couplings show that this is not possible within in the SM

The quark sector

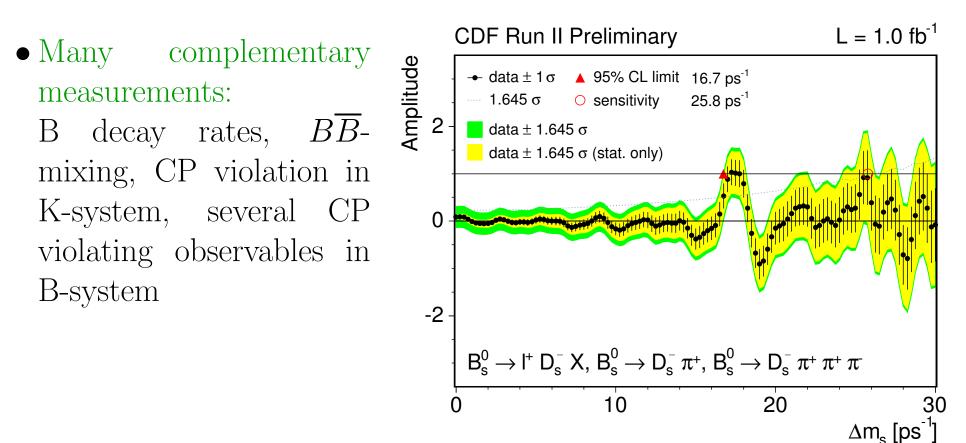
- Quarks "mix", i.e. the mass eigenstates are not equal to the weak eigenstates
- Per construction the mixing is only in the down-quark sector
- Mixing matrix:

$$\vec{d}' = M_{\text{CKM}} \vec{d}$$

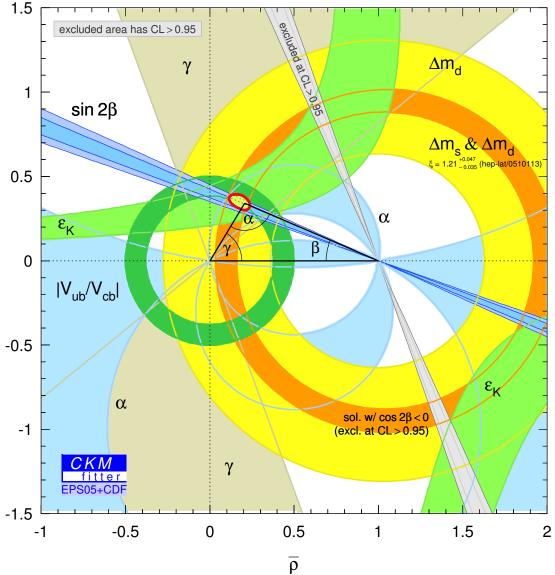
$$M_{\text{CKM}} = (V_{ij}) \ i = u, c, t \ j = d, s, b$$

$$\approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & \lambda^3 A(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & \lambda^2 A \\ \lambda^3 A(1 - \rho - i\eta) & -\lambda^2 A & 1 \end{pmatrix}$$

(Wolfenstein parametrisation)


The matrix contains one non-trivial complex phase
 → CP violation

The importance of CP violation


- CP violation is a prerequisite to transform a symmetric universe into a matter dominated universe (no antimatter!)
- We need at least three families to have CP violation in the SM
- However the CP violation in the SM is not sufficient to create the observed baryon-antibaryon asymmetry
- CP violation has been discovered in the K^0 system long ago
- In recent years also many CP violating effects in the B system have been measured

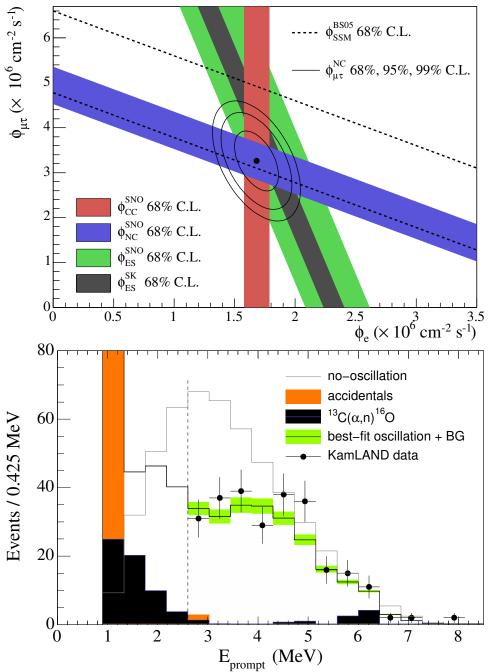
The matrix has to be unitary

- No FCNC
- 6 unitarity triangles: $\sum_{i} V_{im} V_{in}^* = 0 \quad m \neq n$
- Most interesting one: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ (measures ρ, η)
- The area of the triangle defines CP violation

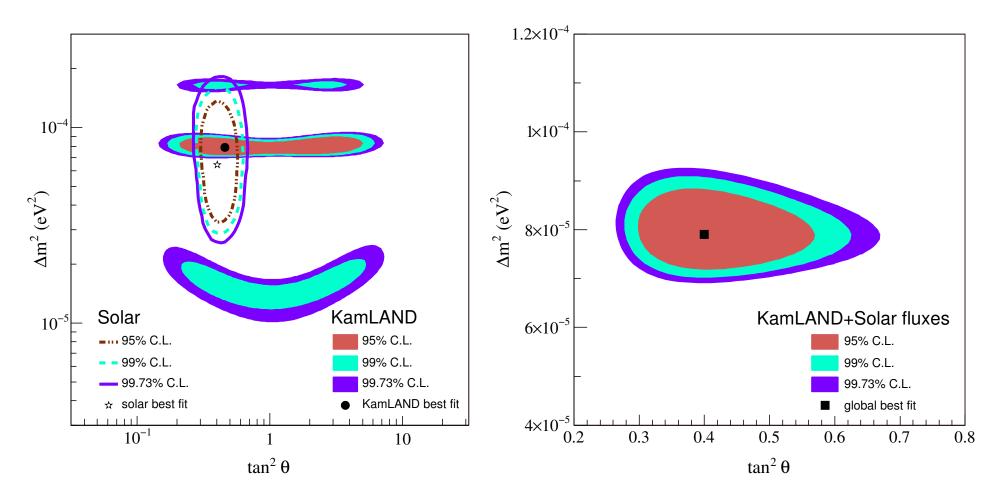
- Each measurement defines a region in the $\rho \eta$ plane
- The combination gives an accurate measurement of the parameters
- - ➡ the CKM description describes the quark sector without the need for new physics contributions

The neutrino sector

Mass terms in the SM: $m\overline{\Psi}_R\Psi_L$ SM: neutrinos are massless \implies right handed neutrinos do not exist Neutrino oscillations:

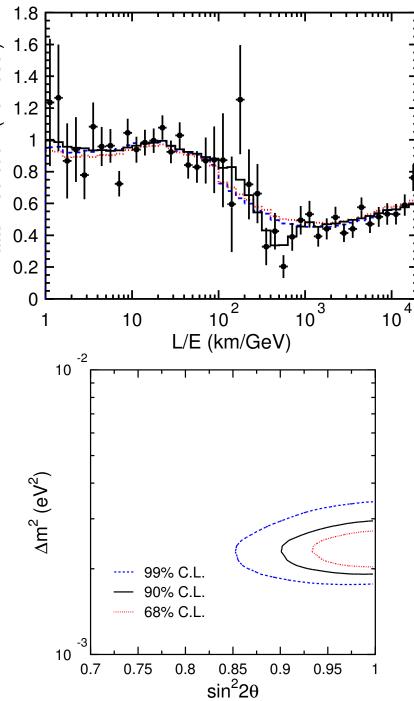

- atmospheric+accelerator neutrinos: $\nu_{\mu} \nu_{\tau}$ mix
- solar+reactor neutrinos: $\nu_e \nu_\mu$ mix
- mixing frequency and amplitude:

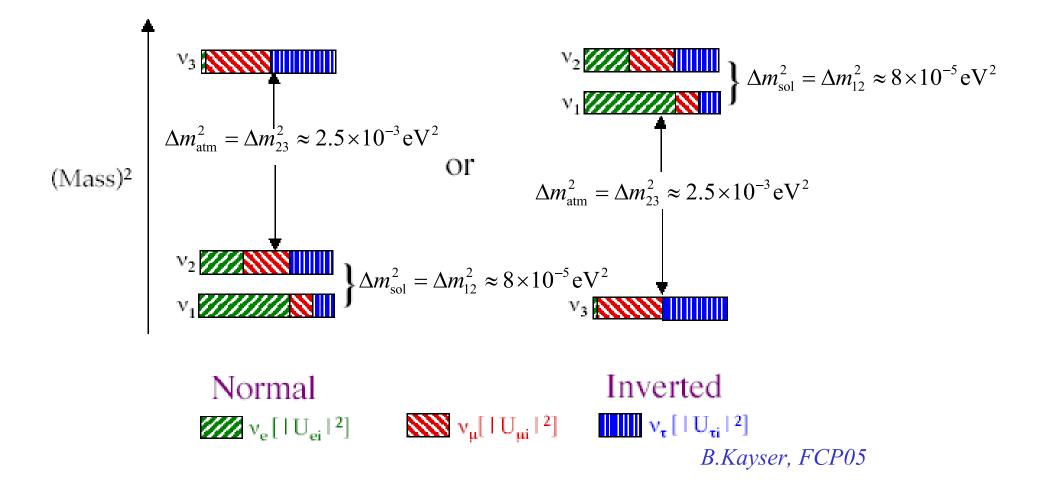
$$P(\nu_1 \to \nu_2) = \sin^2 \theta \sin^2 \frac{\Delta m^2}{4E}$$


⇒ if *ν*s oscillate, they have mass
⇒ oscillation experiments only sensitive to mass differences
• neutrinos must have mass!

Quantitative results: $\nu_e - \nu_\mu$ mixing

- Solar neutrino experiments show that neutrinos transform away from ν_e on their way to the earth
 mixing angle
- Reactor experiment show μ_e dis- More distances
 mass difference




Combination gives precise measurement of both quantities

 $\nu_{\mu} - \nu_{\tau}$ mixing

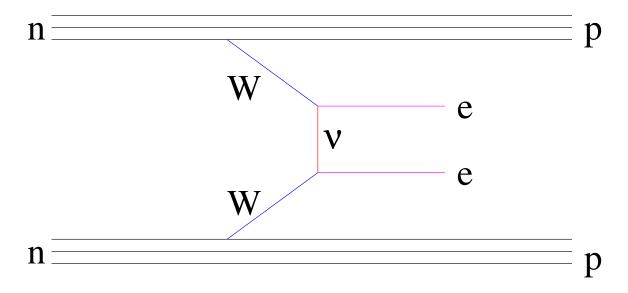
- Data/Prediction (null osc.) • Precise measurements from atmospheric neutrinos (up/down ν_{μ}/ν_{e} ratio
 - -mixing angle maximal
 - -mass difference² factor 100 larger than $\nu_e - \nu_\mu$
- Confirmed by accelerator experiment

- Mixing matrix pretty different from quark sector
- Still two possibilities for the hierarchy
- $\nu_2 > \nu_1$ known from matter effects in the sun

The nature of neutrinos

- In principle neutrinos can be normal Dirac particles in the SM
- Tritium endpoints measurements: $m_{\nu} < 2 \,\text{eV}$
- Difficult to explain the large mass difference in the SM (but we don't understand masses anyway)
- Alternative: neutrinos are Majorana particles small masses follow naturally from the seesaw mechanism

The seesaw mechanism

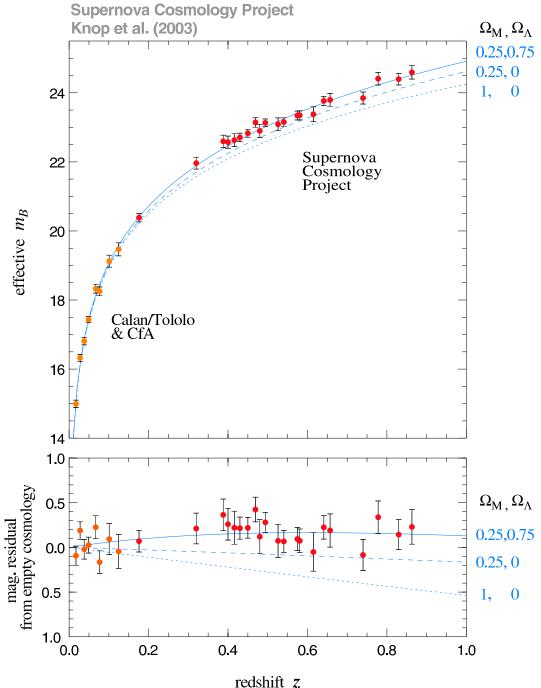

- Neutrinos are mixture of a Dirac particle with mass $m_D = \mathcal{O}(v)$ and a Majorana particle with mass $M = \mathcal{O}(m_{\text{GUT}})$
- Mass matrix

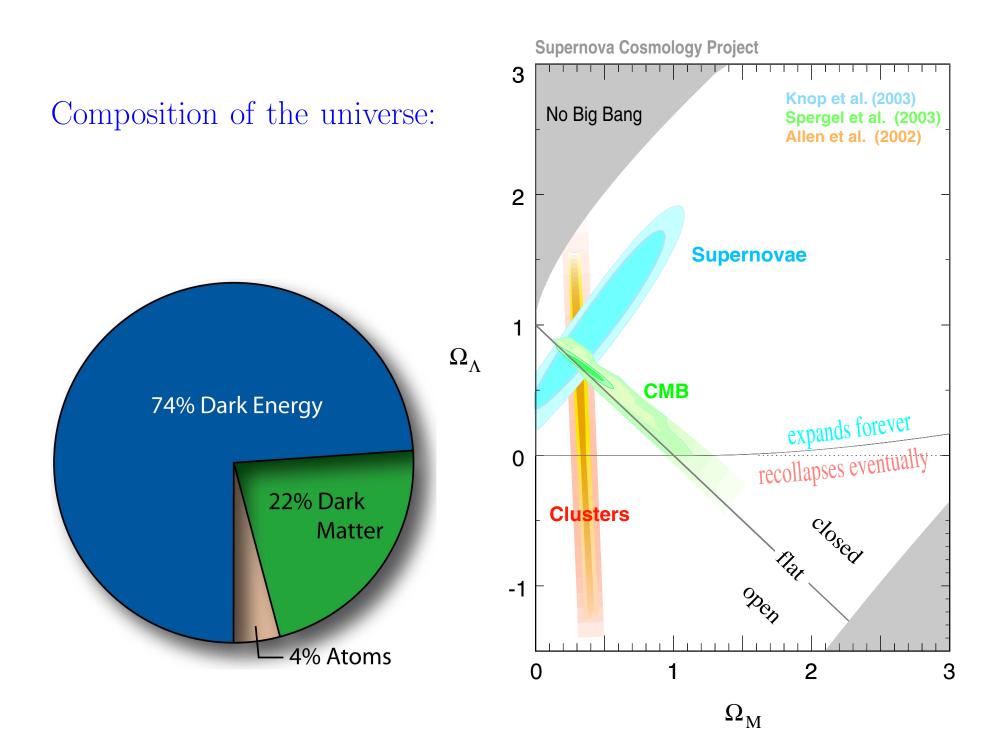
$$M = \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix}$$

Smaller eigenvalue: $m_{\nu} \approx m_D^2/M$: right size

How can the Majorana nature be proven?

Neutrinoless double β decay:




- Lepton number violation requires Majorana nature
- Helicity flip requires neutrino mass
- Current limits from ⁷⁶Ge \rightarrow ⁷⁶Se ee: $m_{\nu} < 0.36$ eV if Majorana particle

The SM of cosmology or why the SM cannot be all

- The universe originates from an initial singularity \approx 15 billion years ago
- \bullet Since then it cools and expands
- Many features like light element production are described very well by this model Angular Scale
- 0.5° 0.2° 90° 2° 6000 • However there are some 5000 ether in the SM from the anisotropy of the cosmic microwave features that don't fit to-4000 gether in the SM 3000 -from the anisotropy of 2000 background it follows 1000 that the geometry is flat 0 10 100 500 1000 Multipole moment (*l*)

- The matter needed for this cannot be all baryonic (dark matter)
- There are many more pieces of evidence for dark matter: rotation curves around galaxies, patterns of galaxy clusters, further features of cosmic microwave spectrum
- From far supernova explosions one sees that the expansion of the universe is accelerating
- This requires that there exists a dark energy or cosmological constant

What do we know about dark matter?

- Weakly interacting particles of mass $m = \mathcal{O}(100 \,\text{GeV})$
- Dark matter cannot be accommodated in the Standard Model
- However several extensions contain a credible dark matter candidate (Supersymmetry, universal extra dimensions, little Higgs)

What do we know about dark energy?

- No way to put dark energy into the SM
- Agreement at the loop level shows that the SM is more than an effective theory
- Factor 10^{62} smaller than naive calculations (Higgs)
- No idea how to put dark energy into any future theory

Conclusions

- The Standard Model describes a vast amount of data with very good precision
- (The neutrino masses may be the first experimental hint beyond the SM)
- However the SM is unnatural (hierarchy problem)
- Dark matter definitely requires extensions of the SM
- Any new theory has to contain the SM as a low energy approximation
- Dark energy gives a hint that something is fundamentally ununderstood in our description of subatomic physics