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¢ Resummation: Organization of soft and collinear
radiation to all orders in PT

e Why resum?

— Tests of perturbative stability for inclusive cross sections.

— The only way to calculate certain critical distributions for
W, Z transverse momentum & jet event shapes.

— As such, tests of QCD to all orders: LO, NLO . ..

— A window to the perturbative/nonperturbative transition.

— An analytic complement to, stimulus for & test of
parton shower techniques and tools.

— Nice formulas (a matter of taste).

e Depends on very some general concepts too.
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. Review: how we get away with perturbative QCD

The sorrows of QCD perturbation theory:

1. Confinement

/ e (0| T[a(z) ... |0)

has no ¢ = m? pole for any field (particle) ¢, that
transforms nontrivially under color (confinement)
2. The pole at p? = m?

T

/ &9 (0] Tl (x) ... ]]0)

is not accessible to perturbation theory ((SB etc., etc.)



e And yet we use infrared safety & asymptotic freedom:

Q% osp(Q% 1%, as(n)) = ) calQ?/1%) o) + O (1/Q7)

n

3 en(1) Q) + O (1/Q7)

n

e What are we really calculating? PT for color singlet operators

— [e'¢*(0| T[J(x)J(0)...]|0) for color singlet currents

eTe~ total, sum rules etc. “no scale”



— Another class of color singlet matrix elements:

i [ drg / dii F(7)) e~V (0] J(0)T 71100 (0, B).T ()] |0)
With ©,; the energy momentum tensor
— These are what we really calculate: jet cross sections, etc.

If the “weight” f(n) introduces no new dimensional scale,

and all d*f/dn” bounded, then

individual final states have IR divergences, but these cancel
in sum over collinear splitting/merging & soft parton
emission because they respect energy flow.



We regularize these divergences dimensionally (typically)
and “pretend”’ to calculate the long-distance enhancements
only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions
tough, and is part [not all] of why higher-order calculations
are hard!

The goals of experiment are remarkably similar — to control
late stage interactions in calorimeters.

Resummation organizes large, or potentially large, terms
from high orders in o, at the short-distance scale.



e Onward to factorization

Q 0phys(Q,m) = wsp(Q/p, as(p)) ® fLp(p,m) + O (1/Q")

— p = factorization scale; m= IR scale (m may be perturbative)
— New physics in wsp; fi,p “universal”

— ep DIS inclusive, pp — jets, QQ, 7(pr) . . .

— Exclusive decays: B — 7

— Exclusive limits: ete™ — JJas m; — 0



e Whenever there is factorization, there is evolution

d
0= ,u@ In opnys(Q,m)

dln f dlnw
p— —P 3 = —
m (as(p)) = —p m

L4

PDF f or Fragmentation D

e Wherever there is evolution there is resummation

Q /
I e (Q, m) = exp { / ‘%P <as<u'>>}



¢ Infrared safety & factorization proofs:
— (1) wgp incoherent with long-distance dynamics

— (2) Mutual incoherence when v, = c:
Jet-jet factorization Ward identities.

— (3) Wide-angle soft radiation sees only total color flow:
jet-soft factorization Ward identities.

— (4) Dimensionless coupling and renormalizability
< no worse that logarithmic divergence in the IR:
fractional power suppression = finiteness



Il. The physical basis of factorization

Classical picture

$)) 8

X3

A = Bet’ —




— Why a classical picture isn’t far-fetched . . .

The correspondence principle is the key
to the origin of IR divergences.

— Any accelerated charge must produce classical radiation,

and infinite numbers of soft gluons are required
to make a classical field.



Transformation of a scalar field:

- q 1o q

From the Lorentz transformation: x3 = ~(3ct’ — z%) = vA'.

Closest approach is at A’ =0, i.e. t' = éxé .

The scalar field transforms “like a ruler”: At any fixed
A’ £ 0, the field decreases like 1/v = /1 — 2.

Why? Because when the source sees a distance z3,
the observer sees a much larger distance.



field
scalar
gauge (—)

field strength

Gauge fields :

A3 ™~ 707

z' frame

q
(x24~202)1/2

A~ (2) = (xéj_77(21§26)3/2

—qvA
Ej(x") = (m%+$;A2)3/2

Eg ~ 2



— The “gluon” A is enhanced, yet is a total derivative:

0
AV = qg— In(Bct’ — 23) +O(1 =) ~ A
0x
— A7 is an unphysical polarization & can be removed by
a gauge transformation!

— The “force” E field of the incident particle does not
overlap the “target” until the moment of the scattering.

— “Advanced” effects are corrections to the total derivative:
2

o S

2E?
— Power-suppressed! These are corrections to factorization.



— Initial-state interactions decouple from hard scattering
— Summarized by multiplicative factors: the parton distributions

— Interactions after the scattering are too late to affect
large momentum transfer, creation of heavy particle, etc.

— Fragmentation of partons to jets too late to know details of
the hard scattering: factorization of fragmentation functions.

— = Cross section for hard scattering is IR safe,

— with power-suppressed corrections.



e The gauge-theory analog of our classical argument is
the universal soft-parton factor:

For soft gluon k£ emitted by fast quark p, Dirac eq. gives:

p]ijkiéz +_mm2 = u(p) (—igs) L + (IR finite)

(p) (~i9:7") —

In a diagram p” will be contracted with a gluon propagator,

and in p- A = 0 gauge, this term vanishes!

vV 1. Voo vV 1.V
G’/N(k):—(g”u e 2 K7k )

+ P
p-k (p- k)2



e Notice this gauge depends on the momentum p.

e The origin of the “universality” of soft gluon interactions.

e But it is the same for every parton in a jet.



A good example is (we’ll come back to this in
resummation) pions at measured transverse momentum.
PDFs ® hard scattering ® fragmentation functions:

> do(
UxT Z/ d:mfa/Hl x1, :LLF)/ dxa fo)m, <x2"u%)

a,b,c

1
x/ dzz2Dh/C (z,,u%)
0

1 i a4 oa A 2

A A T T 8 dOgpex (T5, 1

x/ dZUT5(£UT— )/ dn —L e (AT’ )
0 A

2/ X125 2 didn
with
4 2



1. Vector bosons: () and its factorization

Every final state from a hard scattering carries the imprint
of QCD dynamics from at all distance scales

— One loop corrections: talk by L. Reina
— Look at transverse momentum distribution at order o,
q(p1) + q(p2) — v (Q) + g(k),

— Treat this 2 — 2 process at lowest order (o) “LO”
in factorized cross section, so that k = —Q



— Factorized cross section at fixed Q:

dUNN—wm +X (@, p1,p2) / aa—>,u+,u (Q)+X(Q ts §1P1, §2p2, Q)
dQ2d2Q .6 o dQ?*d?Qr

X fa/n(&1, 1) fayn (€2, 1)

— Recall: 1 is the factorization scale that separates
IR (f) from UV (d&) in quantum corrections.

— 1 appears in ¢ through o (p) and In(u/Q)
so choosing i1 ~ () can improve perturbative predictions.

— Evolution: pdf (z, 1) /dp = [, P(x/€) £(¢, 1)
makes energy extrapolations possible.



— The diagrams at order o
Gluon emission contributes at () # 0

Virtual corrections contribute only at ()7 =0

Pl e

— The result is finite for Q #0 . ..




~ (1) —1/2
dgqci—w*g ~_aCp (1 B 4Q% /
(

dQ22Q, U x2 1 — 2)26,655

1 14+ 22 2z
8 [Q%l—z _(1—Z)Q2]

as long as Q1 # 0, 2 = Q?/£,65 # 1.

In(1—=2),

integral — integral — 291
Qr integral — ——; 2 integral —

Q7 °

Both singularities cancel in the inclusive cross section.
Both inspire resummation of higher order corrections.



The leading singularity in Q7
— As we’ll see later: 1 — 2z ~ 2ky/Q > 2|k7|/Q

— z integral: If Q?/S not too big, PDFs nearly constant:

IR VIC P [ Q2 ]
. — _ In|=>_
chr /1622/5 1 —2 QT Q

= Prediction for ()7 dependence:

dO-NN—>,u+,u_—|—X(Q7 QT) a,Cr 1 In [ Q2 ]

1022 Qy T QL@

a—utu— (Qa:u)
X azq:q/@ & udg?x fayn (&1, 1) fayn (&2, 1)




— Compare to: Z pr from Run |

sl | d9/d% (pb/GeV) T oor -
B \ 66 < Q< 116 GV
Resum | .
\ M, Exclusive Limit

Y <— Resum+power
10 H I

(from Kulesza, G.S., Vogelsang (2002))

— In Q7 /Qr works pretty well for large Q1

— At smaller ()7 reach a maximum, then a decrease
near “exclusive” limit (parton model kinematics)

— Most events are at “low” Q1 < QQ = my.



Getting to Q1 < Q: Transverse momentum resummation
(Logs of Q7)/Qr to all orders
How? Variant factorization and separation of variables

g and ¢ “arrive” at point of annihilation with transverse
momentum of radiated gluons in initial state.

q and ¢ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dO-NN—>,u‘|‘,u_—|—X(Q7 QT)

dQ?*d*Qr




Summarized by: ()p-factorization:

dO'NN—>QX / 2 2 2
= [ d&1d&s dkipd“kord kg 0 — ki — kor — kg
J0E0 §1d8o d°kirdkord ket 0 (Q7 — kir — kar T)

X H(flpla £2p27 Qan)a&HQ—FX
XPan(&1,p1 -1y k1) Payn (&2, 02 - 1y kor) Uga(ksT,n)

The P’s: new Transverse momentum-dependent PDFs

Also need U: “soft function” for wide-angle radiation



Symbolically:

AdONN—QX

dQd*Qr

H X Py/n(&1,01 - 0, kir) Payn (&2, 02 -, ko)
®£z’7kiT Uaa(kSTa n)

We will solve for the k1 dependence of the P’s.

New factorization variables: n" apportions gluons k:

pi-k<n-k = k €P;
pa'k;pa'k > n-k = keU

Convolution in k; s = Fourier ¢/97"



The factorized cross section in “impact parameter space”:

doyn—gx(@Q,b)
e [ deade:

X H(glpla 52]?27 Qan)ad%Q—kX
XPa/n(&1, P11, 0) Payn(§2, 02 - 1, 0) Uga(b, n)

Now we can resum by separating variables!

the LHS independent of ;i..,, n = two equations

do do
ren ; 0 = 0
8 dfiren " dne



Method of Collins and Soper, and Sen (1981)

Change in P must cancel change in (UV) H and (IR) U:

."’L a
op-n

G matches H, K matches U. Renormalization indep. of n*:

p In P(p-n/p,bp) = G(p-n/p) + K(bp)

M%[G(V’n/ﬂ) £ K(bp)] =0

M%G(P'n/ﬂ) — Alas(p) = - u%

Solve this one first.

K (bu)



G(p-n/p) + K(bp) =G -n/p) + K(u/p-n)

Notice the scale in the coupling is now a variable.
Now the consistency equation is

0
op-n

p-n In P(p-n/p,bp) =G -n/p)+ K(p/p-n)

nln®""1(Q/Qr)

Integrate p - n and get double logs in b — & o



Transformed solution back to ()7: all the (Logs of Q1)/Qr:

— —

dO'NNres L B 2 d2b iGp-b N PT
G i~ o Hua(ea(@)) [ e [£1100.0.00

A0 gg— - y
<> /E . “dé;“X(Q ) o €11 /1) fae (€210

a=qq 1‘52

“Sudakov” exponent suppresses large b < small Q):

Q% ;1.2 2
Br = [ 2 [2Aq<cvs<kT>> In (%) +2Bq<as<kT>>]
1/b2 kT kT

With B = 2(K + G),,—p.n, and lower limit: 1/b (NLL)



+ Leading log: fixed o(Q), A" (a,/m) only

—

do N Nres . B 2 d?b iQr-b < A . n2
dQ? d>Qr _%:Haa(%(Q >)/(27r)26 : p{ A (as(@)/m) In”(bQ)

da—a&—> tu— y
) /€ . “dg?”(@ ) o€ /1) fay (€ 1D

a=qq 152

x If ignore evolution of the f’s, get an overall factor

AoNN—ptp-+x(QT) 0 —[aW(au@)/m) m*(Q%/a})]
dQ?d>Qr 0Q7

a-ad—> + = (Qa:u)
Y Z /g T L) fag (€ )




+ Comments:

The functions A;(a;) and B;(as) are anomalous
dimensions.

And can be calculated by comparison to low orders.

In particular, A;(ay) is the numerator of
the 1/(1 — z) term in splitting function P;;(x)

because it’s the infrared divergent (r — 1) coefficient of
the collinear b — oo singularity.

 Ag(e) =20, (1 + %K+...),K:(JA(§_; _ %2)_5%1?



« Logs from LO, NLO in A, = AY(a,/7)+..., LO in B
S Cey in
q

Ew=-2 [ Z‘iﬁ Aantir)) 1 (%) + Blau(br))

o /1Q2 L [ {as(kcp) o g 0slkr) } . (Q_> | 50s(kn)

/b2 E T T k% T
~ 20, %@) Al ;
- /1/b2 2 {1 + (& ff”) (K — 60)}111 (g)
i T
10 (@)
-




x The pattern:

et 78] 1 (49) (- )
5 as(Q)__

-
~ 1n2(bQ)( + a, In(bQ) +...)
+as In(bQ)(1 + as In(bQ) + ...)
+ ...
+ These are LL(A(")), NLL (B, A(?), and so on

+* NLL is good so long as a,(Q)InbQ < 1.



Evaluating a resummed cross sections: re-enter NPQCD.
We start with:

PPT _ /1Q2 dkz leq(as(kT)) In (%j) + Bq(%(kT))]

/b2 k%

With running coupling:




*x Problem: how to do the inverse transform with the
running coupling when k'™ ~ 1/b gets small?

x At least four approaches:
1) Work in QQp-space directly to some approximation
The originals: Dokshitzer, Diakanov & Troyan
Revived by Ellis & Veseli Kulesza & Stirling

who re-derived it from b-space.

2) Insert a “soft landing” on the kp integral by replacing

1/b— \/1/b2 +1/b2
for some fixed b.. (CS, CSS “b,” prescription, ResBos)



3) Extrapolation of E''!1 into NP region (Qiu, Zhang).

4) Minimal: avoid the singularity at 1/b = Aqcp

by monkeying with the b-space contour integral.
(This technique introduced in threshold resummation;
then adapted by Laenen, GS and Vogelsang,

and Bozzi, Catani, de Florian and Grazzini.)

Any of these “define” PT. All will fit the data
qualitatively, and with a little work quantitatively.

But all require new parameters for quantitative fit.
This is not all bad . . . let’s see why.



A bit more consideration generalizes (for the A-term)
for small £ to some upper limit u;:

6 g dk7 \ (i
g = [ Ay () (- 1)

< 1.2 9
o= S (b ke Agfau(h) (%) T
0 T

0(kr — 1/b) = (e®kr —1); in fact, correct to all orders,

but the expansion is for b “ small enough” only.



2
What is [/'7 dk7. as(kr)?

Don’t really know, but suggests
a nonperturbative correction of the form
(exhibiting the y; is unconventional)

ENY = bug (91 In (Q> + 92)
K1

Since this is an exponent, whatever the definition

of the pertrubative resummed cross section, it is
smeared with a Gaussian whose width in b (k1) space
decreases (increases) with In Q).



In summary

do(Qr) ZH o Q2))/ d?b Q70 yEqs (0,Q.1) — b’ (91 ln(Q)+gz)
dQ2d*Qr 4 (27)*

da—ac‘t—> + (Qa:u)
‘& [ TR €18 a1/

o / oy e~k /AluG (92 0(Q/kT)+92)] Gy (Qp — k)
pr— T =
p7(92In(Q/kr) + g2) dQ? d2Qr



Which gives curves like the one we saw before.

10 [

do/dQr (pb/GeV)

66 < Q < 116 GeV

Exclusive Limit

ECDF




Successful phenomenology for W and Z.
In principle, can also fit to fixed-target Drell-Yan with
the same set of NP parameters.

Qiu and Zhang show that NP corrections are
dominant for that range of Q°.

Next — what about those 1/(1 — 2) (soft gluon energy)
singularities?

+ Continue with threshold resummation . ..



