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• Resummation: Organization of soft and collinear

radiation to all orders in PT

• Why resum?

– Tests of perturbative stability for inclusive cross sections.

– The only way to calculate certain critical distributions for

W, Z transverse momentum & jet event shapes.

– As such, tests of QCD to all orders: LO, NLO . . .

– A window to the perturbative/nonperturbative transition.

– An analytic complement to, stimulus for & test of

parton shower techniques and tools.

– Nice formulas (a matter of taste).

• Depends on very some general concepts too.
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I. Review: how we get away with perturbative QCD

The sorrows of QCD perturbation theory:

1. Confinement

∫

e−iq·x〈0|T [φa(x) . . . ] |0〉

has no q2 = m2 pole for any field (particle) φa that

transforms nontrivially under color (confinement)

2. The pole at p2 = m2
π

∫

e−iq·x〈0|T [π(x) . . . ] |0〉

is not accessible to perturbation theory (χSB etc., etc.)



• And yet we use infrared safety & asymptotic freedom:

Q2 σ̂SD(Q2, µ2, αs(µ)) =
∑

n

cn(Q2/µ2) αs
n(µ) + O (1/Qp)

=
∑

n

cn(1) αs
n(Q) + O (1/Qp)

• What are we really calculating? PT for color singlet operators

–
∫

e−iq·x〈0|T [J(x)J(0) . . . ] |0〉 for color singlet currents

e+e− total, sum rules etc. “no scale”



– Another class of color singlet matrix elements:

lim
R→∞

∫

dx0

∫

dn̂ f(n̂) e−iq·y〈0|J(0)T [n̂iΘ0i(x0, Rn̂)J(y)] |0〉

With Θ0i the energy momentum tensor

– These are what we really calculate: jet cross sections, etc.

If the “weight” f(n̂) introduces no new dimensional scale,

and all dkf/dn̂k bounded, then

individual final states have IR divergences, but these cancel

in sum over collinear splitting/merging & soft parton

emission because they respect energy flow.



We regularize these divergences dimensionally (typically)

and “pretend” to calculate the long-distance enhancements

only to cancel them in infrared safe quantities

It is this intermediate step that makes the calcualtions

tough, and is part [not all] of why higher-order calculations

are hard!

The goals of experiment are remarkably similar – to control

late stage interactions in calorimeters.

Resummation organizes large, or potentially large, terms

from high orders in αs at the short-distance scale.



• Onward to factorization

Q2σphys(Q,m) = ωSD(Q/µ,αs(µ)) ⊗ fLD(µ,m) + O (1/Qp)

– µ = factorization scale; m= IR scale (m may be perturbative)

– New physics in ωSD; fLD “universal”

– ep DIS inclusive, pp → jets, QQ̄, π(pT ) . . .

– Exclusive decays: B → ππ

– Exclusive limits: e+e− → JJ as mJ → 0



• Whenever there is factorization, there is evolution

0 = µ
d

dµ
lnσphys(Q,m)

µ
d ln f

dµ
= −P (αs(µ)) = −µ

d ln ω

dµ

PDF f or Fragmentation D

• Wherever there is evolution there is resummation

lnσphys(Q,m) = exp

{

∫ Q

q

dµ′

µ′
P (αs(µ

′))

}



• Infrared safety & factorization proofs:

– (1) ωSD incoherent with long-distance dynamics

– (2) Mutual incoherence when vrel = c:

Jet-jet factorization Ward identities.

– (3) Wide-angle soft radiation sees only total color flow:

jet-soft factorization Ward identities.

– (4) Dimensionless coupling and renormalizability

⇔ no worse that logarithmic divergence in the IR:

fractional power suppression ⇒ finiteness



II. The physical basis of factorization

Classical picture

x,y,z,t

q
β 1

x , y , z , t

x     3

∆ ≡ βct′ − x′
3



– Why a classical picture isn’t far-fetched . . .

The correspondence principle is the key

to the origin of IR divergences.

– Any accelerated charge must produce classical radiation,

and infinite numbers of soft gluons are required

to make a classical field.



Transformation of a scalar field:

φ(x) =
q

√

x2
T + x2

3

= φ′(x′) =
q

(x2
T + γ2∆2)1/2

From the Lorentz transformation: x3 = γ(βct′ − x′
3) ≡ γ∆′.

Closest approach is at ∆′ = 0, i.e. t′ = 1
βcx

′
3 .

The scalar field transforms “like a ruler”: At any fixed

∆′ 6= 0, the field decreases like 1/γ =
√

1 − β2.

Why? Because when the source sees a distance x3,

the observer sees a much larger distance.



x,y,z,t

q
β 1

x , y , z , t

x     3

field x frame x′ frame

scalar q
|~x|

q

(x2
T
+γ2∆2)1/2

gauge (−) A−(x) = q
|~x| A′−(x′) = −qγ(1+β)

(x2
T
+γ2∆2)1/2

field strength E3(x) = q
|~x|2

E′
3(x

′) = −qγ∆

(x2
T+γ2∆2)3/2

Gauge fields : A3 ∼ γ0, E3 ∼ γ−2



– The “gluon” ~A is enhanced, yet is a total derivative:

Aµ = q
∂

∂xµ
ln (βct′ − x3) + O(1 − β) ∼ A−

– A− is an unphysical polarization & can be removed by

a gauge transformation!

– The “force” ~E field of the incident particle does not

overlap the “target” until the moment of the scattering.

– “Advanced” effects are corrections to the total derivative:

1 − β ∼ 1

2

[

√

1 − β2
]2

∼ m2

2E2

– Power-suppressed! These are corrections to factorization.



– Initial-state interactions decouple from hard scattering

– Summarized by multiplicative factors: the parton distributions

– Interactions after the scattering are too late to affect

large momentum transfer, creation of heavy particle, etc.

– Fragmentation of partons to jets too late to know details of

the hard scattering: factorization of fragmentation functions.

– ⇒ Cross section for hard scattering is IR safe,

– with power-suppressed corrections.



• The gauge-theory analog of our classical argument is

the universal soft-parton factor:

For soft gluon k emitted by fast quark p, Dirac eq. gives:

ū(p) (−igs γµ )
p/ + k/ + m

(p + k)2 − m2
= ū(p) (−igs )

pµ

p · k + (IR finite)

In a diagram pµ will be contracted with a gluon propagator,

and in p · A = 0 gauge, this term vanishes!

Gνµ(k) = −
(

gνµ − pν kµ + kν pµ

p · k + p2 kν kν

(p · k)2

)



• Notice this gauge depends on the momentum p.

• The origin of the “universality” of soft gluon interactions.

• But it is the same for every parton in a jet.



A good example is (we’ll come back to this in
resummation) pions at measured transverse momentum.
PDFs ⊗ hard scattering ⊗ fragmentation functions:

p3
T dσ(xT )

dpT
=

∑

a,b,c

∫ 1

0

dx1 fa/H1

(

x1, µ
2
F

)

∫ 1

0

dx2 fb/H2

(

x2, µ
2
F

)

×
∫ 1

0

dz z2 Dh/c

(

z, µ2
F

)

×
∫ 1

0

dx̂T δ

(

x̂T − xT

z
√

x1x2

)
∫ η̂+

η̂−

dη̂
x̂4

T ŝ

2

dσ̂ab→cX(x̂2
T , η̂)

dx̂2
Tdη̂

with

x2
T =

4p2
T

S

η̂+ = −η̂− = ln

[

(1 +
√

1 − x̂2
T )/x̂T

]



III. Vector bosons: QT and its factorization

Every final state from a hard scattering carries the imprint

of QCD dynamics from at all distance scales

– One loop corrections: talk by L. Reina

– Look at transverse momentum distribution at order αs

q(p1) + q̄(p2) → γ∗(Q) + g(k) ,

– Treat this 2 → 2 process at lowest order (αs) “LO”

in factorized cross section, so that k = −QT



– Factorized cross section at fixed QT :

dσNN→µ+µ−+X(Q, p1, p2)

dQ2d2QT
=

∫

ξ1,ξ2

∑

a=qq̄

dσ̂aā→µ+µ−(Q)+X(Q, µ, ξ1p1, ξ2p2,QT )

dQ2d2QT

× fa/N(ξ1, µ) fā/N(ξ2, µ)

– Recall: µ is the factorization scale that separates

IR (f) from UV (dσ̂) in quantum corrections.

– µ appears in σ̂ through αs(µ) and ln(µ/Q)

so choosing µ ∼ Q can improve perturbative predictions.

– Evolution: µdf(x, µ)/dµ =
∫ 1

x
P (x/ξ) f(ξ, µ)

makes energy extrapolations possible.



– The diagrams at order αs

Gluon emission contributes at QT 6= 0

Virtual corrections contribute only at QT = 0

– The result is finite for QT 6= 0 . . .



dσ̂
(1)
qq̄→γ∗g

dQ2 d2QT
= σ0

αsCF

π2

(

1 − 4Q2
T

(1 − z)2ξ1ξ2S

)−1/2

×
[

1

Q2
T

1 + z2

1 − z
− 2z

(1 − z)Q2

]

as long as QT 6= 0, z = Q2/ξ1ξ2S 6= 1.

QT integral → ln(1−z)
1−z ; z integral → ln Q2

T

Q2
T

.

Both singularities cancel in the inclusive cross section.

Both inspire resummation of higher order corrections.



The leading singularity in QT

– As we’ll see later: 1 − z ∼ 2k0/Q ≥ 2|kT |/Q

– z integral: If Q2/S not too big, PDFs nearly constant:

1

Q2
T

∫ 1−Q2
T/Q2

1−Q2/S

dz

1 − z
=

1

Q2
T

ln

[

Q2

Q2
T

]

⇒ Prediction for QT dependence:

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT
=

αsCF

π

1

Q2
T

ln

[

Q2

Q2
T

]

×
∑

a=qq̄

∫

ξ1ξ2

σ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, µ) fā/N(ξ2, µ)



– Compare to: Z pT from Run I

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power

(from Kulesza, G.S., Vogelsang (2002))

– ln QT/QT works pretty well for large QT

– At smaller QT reach a maximum, then a decrease

near “exclusive” limit (parton model kinematics)

– Most events are at “low” QT ≪ Q = mZ.



Getting to QT ≪ Q: Transverse momentum resummation

(Logs of QT )/QT to all orders

How? Variant factorization and separation of variables

q and q̄ “arrive” at point of annihilation with transverse

momentum of radiated gluons in initial state.

q and q̄ radiate independently (fields don’t overlap!).

Final-state QCD radiation too late to affect cross section

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT



Summarized by: QT -factorization:

dσNN→QX

dQd2QT
=

∫

dξ1dξ2 d2k1Td2k2Td2ksT δ (QT − k1T − k2T − ksT )

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T ) Uaā(ksT , n)

The P ′s: new Transverse momentum-dependent PDFs

Also need U : “soft function” for wide-angle radiation



Symbolically:

dσNN→QX

dQd2QT
H ×Pa/N(ξ1, p1 · n, k1T )Pā/N(ξ2, p2 · n, k2T )

⊗ξi,kiT
Uaā(ksT , n)

We will solve for the kT dependence of the P’s.

New factorization variables: nµ apportions gluons k:

pi · k < n · k ⇒ k ∈ Pi

pa · k, pā · k > n · k ⇒ k ∈ U

Convolution in ki,T s ⇒ Fourier ei ~QT ·~b



The factorized cross section in “impact parameter space”:

dσNN→QX(Q, b)

dQ
=

∫

dξ1dξ2

× H(ξ1p1, ξ2p2, Q,n)aā→Q+X

×Pa/N(ξ1, p1 · n, b)Pā/N(ξ2, p2 · n, b) Uaā(b, n)

Now we can resum by separating variables!

the LHS independent of µren, n ⇒ two equations

µren
dσ

dµren
= 0 nα dσ

dnα
= 0



Method of Collins and Soper, and Sen (1981)

Change in P must cancel change in (UV) H and (IR) U :

p · n ∂

∂p · n ln P(p · n/µ, bµ) = G(p · n/µ) + K(bµ)

G matches H, K matches U . Renormalization indep. of nµ:

µ
∂

∂µ
[ G(p · n/µ) + K(bµ) ] = 0

µ
∂

∂µ
G(p · n/µ) = A(αs(µ)) = − µ

∂

∂µ
K(bµ)

Solve this one first.



G(p · n/µ) + K(bµ) = G(p · n/µ) + K(µ/p · n)

−
∫ p·n

1/b

dµ′

µ′
Aa(αs(µ

′))

Notice the scale in the coupling is now a variable.

Now the consistency equation is

p · n ∂

∂p · n ln P(p · n/µ, bµ) = G(p · n/µ) + K(µ/p · n)

−
∫ p·n

1/b

dµ′

µ′
A(αs(µ

′))

Integrate p · n and get double logs in b → αn
s

ln2n−1(Q/QT )
QT

.



Transformed solution back to QT : all the (Logs of QT )/QT :

dσNNres

dQ2 d2 ~QT

=
∑

a

Haā(αs(Q
2))

∫

d2b

(2π)2
ei ~QT ·~b exp

[

EPT
aā (b, Q, µ)

]

×
∑

a=qq̄

∫

ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q, µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

“Sudakov” exponent suppresses large b ↔ small QT :

EPT
aā = −

∫ Q2

1/b2

dk2
T

k2
T

[

2Aq(αs(kT )) ln

(

Q2

k2
T

)

+ 2Bq(αs(kT ))

]

With B = 2(K + G)µ=p·n, and lower limit: 1/b (NLL)



∗ Leading log: fixed αs(Q), A(1)(αs/π) only

dσNNres

dQ2 d2 ~QT

=
∑

a

Haā(αs(Q
2))

∫

d2b

(2π)2
ei ~QT ·~b exp

[

− A(1)(αs(Q)/π) ln2(bQ)
]

×
∑

a=qq̄

∫

ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

∗ If ignore evolution of the f ’s, get an overall factor

dσNN→µ+µ−+X(Q,QT )

dQ2d2QT
=

∂

∂Q2
T

e
−

h

A(1)(αs(Q)/π) ln2(Q2/Q2
T )

i

×
∑

a=qq̄

∫

ξ1ξ2

σ̂aā→µ+µ−(Q)+X(Q,µ)

dQ2
fa/N(ξ1, µ) fā/N(ξ2, µ)



∗ Comments:

The functions Ai(αs) and Bi(αs) are anomalous

dimensions.

And can be calculated by comparison to low orders.

In particular, Ai(αs) is the numerator of

the 1/(1 − x) term in splitting function Pii(x)

because it’s the infrared divergent (x → 1) coefficient of

the collinear b → ∞ singularity.

∗ Aq(αs) = αs
π Cq

(

1 + αs
π K + . . .

)

, K = CA

(

67
18 − π2

6

)

− 5nF
9



∗ Logs from LO, NLO in Aq = A
(1)
q (αs/π) + . . . , LO in Bq

Eqq̄ = − 2

∫ Q2

1/b2

dk2
T

k2
T

[

Aq(αs(kT )) ln

(

Q2

k2
T

)

+ B(αs(kT ))

]

∼ 2Ci

∫ Q2

1/b2

dk2
T

k2
T

[{

αs(kT )

π
+ K

αs(kT )

π

}

ln

(

Q2

k2
T

)

+ 2
αs(kT )

π

]

∼ 2Ci
αs(Q)

π

∫ Q2

1/b2

dk2
T

k2
T

[

{

1 +

(

αs(Q)

π

)

(K − β0)

}

ln

(

Q2

k2
T

)

+2
αs(Q)

π

]



∗ The pattern:

2Ci
αs(Q)

π

∫ Q2

1/b2

dk2
T

k2
T

[

{

1 +

(

αs(Q)

π

) (

K − β0

4π

)}

ln

(

Q2

k2
T

)

+2
αs(Q)

π

]

∼ αs ln2(bQ)(1 + αs ln(bQ) + . . . )

+αs ln(bQ)(1 + αs ln(bQ) + . . . )

+ . . .

∗ These are LL(A(1)), NLL (B(1), A(2)), and so on

∗ NLL is good so long as αs(Q) ln bQ ≤ 1.



∗ Evaluating a resummed cross sections: re-enter NPQCD.

We start with:

EPT = −
∫ Q2

1/b2

dk2
T

k2
T

[

2Aq(αs(kT )) ln

(

Q2

k2
T

)

+ Bq(αs(kT ))

]

With running coupling:

αs(kT ) =
αs(Q)

1 + αs(Q)
4π β0 ln

(

k2
T

Q2

) =
4π

β0 ln

(

k2
T

Λ2
QCD

)

Singularity in integral at b2 = Q2 exp[−4π/β0αs(Q)] ∼ 1
Λ2.



∗ Problem: how to do the inverse transform with the

running coupling when kmin
T ∼ 1/b gets small?

∗ At least four approaches:

1) Work in QT -space directly to some approximation

The originals: Dokshitzer, Diakanov & Troyan

Revived by Ellis & Veseli Kulesza & Stirling

who re-derived it from b-space.

2) Insert a “soft landing” on the kT integral by replacing

1/b →
√

1/b2 + 1/b2
∗

for some fixed b∗. (CS, CSS “b∗” prescription, ResBos)



3) Extrapolation of EPT into NP region (Qiu, Zhang).

4) Minimal: avoid the singularity at 1/b = ΛQCD

by monkeying with the b-space contour integral.

(This technique introduced in threshold resummation;

then adapted by Laenen, GS and Vogelsang,

and Bozzi, Catani, de Florian and Grazzini.)

Any of these “define” PT. All will fit the data

qualitatively, and with a little work quantitatively.

But all require new parameters for quantitative fit.

This is not all bad . . . let’s see why.



A bit more consideration generalizes (for the A-term)

for small kT to some upper limit µI:

Esoft =

∫ µ2
I

0

dk2
T

k2
T

Aq(αs(kT )) ln

(

Q2

k2
T

)

(

eib·kT − 1
)

∼ −
∫ µ2

I

0

dk2
T

k2
T

(b · kT )2Aq(αs(kT )) ln

(

Q2

k2
T

)

+ · · ·

θ(kT − 1/b) ⇒ (eib·kT − 1); in fact, correct to all orders,

but the expansion is for b “ small enough” only.



What is
∫ µ2

I
0

dk2
T αs(kT )?

Don’t really know, but suggests

a nonperturbative correction of the form

(exhibiting the µI is unconventional)

ENP = b2µ2
I

(

g1 ln

(

Q

µI

)

+ g2

)

Since this is an exponent, whatever the definition

of the pertrubative resummed cross section, it is

smeared with a Gaussian whose width in b (kT ) space

decreases (increases) with lnQ.



In summary

dσ(QT )

dQ2 d2 ~QT

=
∑

a

Haā(αs(Q
2))

∫

d2b

(2π)2
ei ~QT ·~b eEPT

aā (b,Q,µ) e
− µ2

Ib2(g1 ln
“

Q
µI

”

+g2)

×
∑

a=qq̄

∫

ξ1ξ2

dσ̂aā→µ+µ−(Q)+X(Q, µ)

dQ2
fa/N(ξ1, 1/b) fā/N(ξ2, 1/b)

= π

∫

d2kT
e−k2

T /4[µ2
I(g2 ln(Q/kT )+g2)]

µ2
I(g2 ln(Q/kT ) + g2)

dσNN(QT − kT)

dQ2 d2 ~QT



Which gives curves like the one we saw before.

66 < Q < 116 GeV

CDF

Exclusive Limit
Resum

Resum+power



Successful phenomenology for W and Z.

In principle, can also fit to fixed-target Drell-Yan with

the same set of NP parameters.

Qiu and Zhang show that NP corrections are

dominant for that range of Q2.

Next – what about those 1/(1 − z) (soft gluon energy)

singularities?

∗ Continue with threshold resummation . . .


