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V. Threshold resummation

e Back to the one-loop DY hard-scattering
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e Factorized cross section at fixed Q:
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Integrate over Qr: the NLO total DY cross section
2
Integrate over Qp at fixed z = gfgﬁ Q7T — 0 is singular.

Add diagrams with virtual gluons: their kr integrals
are singular.

Factorize low k7 = — Q7 < i gluons as in DIS.

The remainder is now finite at fixed QQ, z # 1.



e The ()r-integrated NLO partonic cross section
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e Plus distributions: “generalized functions” (c.f. delta function).



e What they are, how they work
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and so on . . . where f(x) will be parton distributions

o f(z) term: real gluon, with momentum fraction 1 — z.
e f(1) term: virtual, with elastic kinematics.

o If f(x) is changing rapidly, find a large correction.



e A Special Distribution is the

e DGLAP “evolution kernel’ = “splitting function”:
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¢ Nonsinglet, leading order



e A neat bit of soft-gluon kinematics: p, + ps = g+ k =
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So one singularity in 6! is from k; = 0, one from ky = 0,
for any number of soft partons in the final state.

2z — 1 is called “partonic threshold”.



e T hreshold resummation is resummation
for the plus distributions.

e Same method as for Q7, but now fix kgp ~ 2(1 — 2)Q.

Laplace or Mellin transform e~ V2%0/@ ~ 2N and MS
collinear subtraction gives (here NLL accuracy shown)
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Threshold: small 1 — z ~ 2ky/Q, large N: enhancement:
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e As for Q7, these are LL(A)), NLL (B, A(®), and so on.



e And again, NLL is good so long as a,(Q)In N < 1.

In this case, the enhancement is entirely due to the
subtraction of collinear singularities.

The MS distributions decrease faster in N
than the partonic cross section.



e Inverse transform to the cross section:
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Formalism is similar for W, Z, H. “Electroweak annihilation”

Typical collider result . ..



e Logs: threshold resummation vs. fixed order for H at LHC
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(from Catani, de Florian, Grazzini, Nason (2003))

(See also L. Reina lecture 11.)

e Modest change & decrease in u-dependence
— increased confidence. But see Sec. VII.)



V. Jet shapes and 1/(@) corrections

e Angularity event shapes

(C.F. Berger, Kucs, GS (2003), Berger, Magnea (2004))
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e 0; angle to thrust (a = 0) axis (7 that gives 7"™).

e Jet “broadening”: a = 1; total cross section: a — — .



e NLL resummed cross section is from an inverse transform:
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e At NLL can define U.; = 1: indepenent jet “shower”

evolution. (Catani, Turnock, Trentadue, Webber (1990-92))



So we need the resummed jet function in transform space
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where the same reasoning as above gives:
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Again, nonperturbative scales are implied by
resummmed PT. But now, an expansion in powers of 1/Q) . ..



Shape function approach for ete™ jets

® D > K, PT

e pr < K, expand exponentials: isolate “shape function”.

e Low pr (< k < uy) replaced by fyp

E(v,Q,a) = Ept(v,Q, K, a)
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Shape function properties

e fnp factorizes under moments — convolution
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e fnp function of v/Qonly

e Linear in v/Q: shift in PT distribution

(Korchemsky & GS (1995), Dokshitzer & Webber (1997))
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e Shape function phenomenology for thrust

(Korchemsky,GS, Belitsky; Gardi Rathsman,Magnea (1998 . . .))

Decay gcheme (udscb). ay & SF fixed
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Strategy: fnp(e) at Z pole; predict other () (viz. PDFs)



e Scaling property for 7, event shapes

e (Approximate rapidity-independence of NP dynamics)

e All a-dependence is in the exponent.



e What PYTHIA gives

e Intriguing, but

untested as yet.



VI. Resummation and the Higgs

e See also L. Reina, lecture Il.

e Main differences from W and Z are because Higgs
is produced primarily from gluon fusion: gg — t loop — H.

Cr=4/3 — C4 = 3 in the exponent for ()7 resummation.
State of the art: Bozzi, Catani, de Florian, Grazzini (2006).
Includes all of NLO at large Q1 (“matching”) and NNLL.

A®): from NNLO splitting function

(Moch, Vermaseren and Vogt, 2004-6).



Directly from Bozzi et al., 2006:
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Figure 1: The qr spectrum at the LHC with My = 125 GeV: (left) setting
ur = prp = Q = My, the results at NNLL+NLO accuracy are compared
with the NLO spectrum and the finite component of the NLO spectrum; (right)

the uncertainty band from variations of the scales ur and pr
at NNLL+NLO accuracy.



VIl. Generalizations and limitations

A) Factorization with no hard scattering: BFKL

(Sen (1980) Balitsky (1996) Kucs (2003))
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e Factorization at fixed rapidity separation:
Jets, I' & soft, S: no H. Introduce vector n* as above.



e Evolution equations (in In s ~ rapidity) give

e generically m convolutions at N LL
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e Can project onto different color exchange:
octet, m = 0 LL reggeized gluon
singlet, m = 1, BFKL LL pomeron . ..



B) Non-global logs: color and energy flow

(Dasgupta & Salam (2001))

Jet 1

Jet 2

e Simplest cases: 2 jets. Measure distribution Y (F)

e Very interesting case: energy flow between jets
in WW fusion to H.



e Choices for Cross Section:

e a) Inclusive in Q) — Number of jets not fixed!

e b) Correlation with event shape 7, . . . :
fixes number of jets — factorization

(Berger, Kiics, GS (2003), Dokshitzer, Marchesini (2003), Banfi, Salam, Zanderighi (2004,5))



e for a): Number of jets not fixed: nonlinear evolution
(Banfi, Marchesini, Smye (2002)) LL in £/Q, large-N,,
approximate evolution equation for distribution . is
non-linear!
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¢ Origin of the nonlinearity

— O requires a “hard” gluon k.

— New hard gluon acts as new, recoil-less source.
— Large-N limit: q(a)G(k)q(b) sources — q(a)q(k) @ q(k)q(a).
— “Global” event shape eliminates extra hard gluon.

— But fixing an event shape limits the number of events.

— We are far from a full understanding.



C) Large threshold effects in observed hadrons

e Pions at fixed target and RHIC (Vogelsang and de Florian, 2004)
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7: pseudorapidity at parton level



e Averages for distribution x and fragmentation z’s
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RHIC 200 GeV midrapidity average z for pions, and average x for pions,
photons, jets at (NLO). Thanks to Werner Vogelsang.

e Large 2z enhances threshold singularities.



e Singularities at one loop:
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e For resummation, take 72" moments — factorization:
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e A typical NLL resummed factor:
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e Invert the moments: resolve a long-standing fixed-target
vs. collider puzzle.
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o Left: expansion of resummed cross section to fixed orders.
e Right: exact NLO vs. NLO expansion.

e Shows in 7¥ 1PI cross sections threshold resummation is
more accurate and more important in fixed target range.



Conclusion

e Time’'s up for a sample of a large subject.

e Resummation just scratches the surface of QCD.
But it makes a mark.



