Drell-Yan process and heavy boson production at hadron colliders

Pavel Nadolsky

Argonne National Laboratory

June 4, 2007

Pavel Nadolsky (ANL)

CTEQ summer school

Lecture 2

June 4, 2007

Some references

- My slides are available from the CTEQ webpage or http://hep.pa.msu.edu/nadolsky/tmp/cteqX.pdf
- Feynman rules for tree helicity amplitudes involving massive quarks and bosons Schwinn, Weinzierl, hep-th/0503015
- Gluon PDF in a pion (depends on theory assumptions) Sutton, Martin, Roberts, Stirling, PRD 45, 2349 (1992); Gluck, Reya, Stratmann, hep-ph/9711369
- Multiple parton interactions in Pythia Sjostrand, Mrenna, Skands, hep-ph/0603175, chapters 11.2-11.4

Outline

Saturday

- ▶ low-*Q* lepton pair production
- heavy electroweak bosons
- kinematics
- leading-order (LO) cross sections
- NLO/NNLO results

Monday

- modern applications
- QCD factorization and resummation of large logarithms
- new physics searches

Typical parton momentum fractions

$$x_{A,B} \equiv \frac{Q}{\sqrt{s}} e^{\pm y}$$

Born level: $p_a^{\mu} = x_A p_A^{\mu}$, $p_b^{\mu} = x_B p_B^{\mu}$

Typical rapidities in the experiment: $|y| \lesssim 2$

experiments at higher energies are sensitive to PDF's at smaller x

Pavel Nadolsky (ANL)

$$pN \xrightarrow{\gamma^*} \ell^+ \ell^- X$$
 at $Q <$ 20 GeV

- Continuous γ^* cross section
- Multiple quarkonium resonances (neglected in the PDF fit)
- ▲ J/ψ ($c\bar{c}$)– found in e^+e^- scattering (1974)

▲ Υ (*bb*)– found in $pN \rightarrow \mu^+ \mu^- X$ (FNAL-E288, 1977)

 $J/\psi, \Upsilon$ resonances shown with better resolution (FNAL-E866)

Constraints on quark sea from $pN \rightarrow \ell^+ \ell^- X$ (N = p, d, Fe, Cu, ..)

 $\frac{d\sigma_{pp}}{dQ^2 dy} \sim \left(\frac{2}{3}\right)^2 \left[u_A \bar{u}_B + \bar{u}_A u_B\right] + \left(-\frac{1}{3}\right)^2 \left[d_A \bar{d}_B + \bar{d}_A d_B\right] + \text{ smaller terms}$ $\Rightarrow \text{ sensitivity to } \bar{q}(x, Q)$

Assuming charge symmetry between protons and neutrons $(u_p = d_n, u_n = d_p)$: $\frac{d\sigma_{pn}}{dQ^2 dy} \sim (\frac{2}{3})^2 \left[u_A \bar{d}_B + \bar{u}_A d_B \right] + (-\frac{1}{3})^2 \left[d_A \bar{u}_B + \bar{d}_A u_B \right] +$ smaller terms

If deuterium binding corrections are neglected: $q_d(x) \approx q_p(x) + q_n(x)$

At $x_A \gg x_B$ (large y): $\bar{q}(x_A) \sim 0$ and $4u(x_A) \gg d(x_A)$

$$\frac{\sigma_{pd}}{2\sigma_{pp}} \approx \frac{1}{2} \frac{(1 + \frac{d_A}{4u_A})[1 + r]}{(1 + \frac{d_A}{4u_A}r)} \approx \frac{1}{2}(1 + r), \text{ where } r \equiv \overline{d}(x_B)/\overline{u}(x_B)$$

 $\therefore \sigma_{pd}/(2\sigma_{pp})$ constrains $\bar{d}(x,Q)/\bar{u}(x,Q)$ at moderate x

Constraints on quark sea from $pN \rightarrow \ell^+ \ell^- X$ (N = p, d, Fe, Cu, ..)

 $\frac{d\sigma_{pp}}{dQ^2 dy} \sim \left(\frac{2}{3}\right)^2 \left[u_A \bar{u}_B + \bar{u}_A u_B\right] + \left(-\frac{1}{3}\right)^2 \left[d_A \bar{d}_B + \bar{d}_A d_B\right] + \text{ smaller terms}$ $\Rightarrow \text{ sensitivity to } \bar{q}(x, Q)$

Assuming charge symmetry between protons and neutrons $(u_p = d_n, u_n = d_p)$: $\frac{d\sigma_{pn}}{dQ^2 dy} \sim (\frac{2}{3})^2 \left[u_A \bar{d}_B + \bar{u}_A d_B \right] + (-\frac{1}{3})^2 \left[d_A \bar{u}_B + \bar{d}_A u_B \right] +$ smaller terms

If deuterium binding corrections are neglected: $q_d(x) \approx q_p(x) + q_n(x)$

At $x_A \gg x_B$ (large y): $\bar{q}(x_A) \sim 0$ and $4u(x_A) \gg d(x_A)$

$$rac{\sigma_{pd}}{2\sigma_{pp}} pprox rac{1}{2} rac{(1+rac{d_A}{4u_A})[1+r]}{(1+rac{d_A}{4u_A}r)} pprox rac{1}{2}(1+r), ext{ where } r \equiv \overline{d}(x_B)/\overline{u}(x_B)$$

 $\therefore \sigma_{pd}/(2\sigma_{pp})$ constrains $\bar{d}(x,Q)/\bar{u}(x,Q)$ at moderate x

Constraints on quark sea from $pN \rightarrow \ell^+ \ell^- X$ (N = p, d, Fe, Cu, ..)

 $\frac{d\sigma_{pp}}{dQ^2 dy} \sim \left(\frac{2}{3}\right)^2 \left[u_A \bar{u}_B + \bar{u}_A u_B\right] + \left(-\frac{1}{3}\right)^2 \left[d_A \bar{d}_B + \bar{d}_A d_B\right] + \text{ smaller terms}$ $\Rightarrow \text{ sensitivity to } \bar{q}(x, Q)$

Assuming charge symmetry between protons and neutrons $(u_p = d_n, u_n = d_p)$: $\frac{d\sigma_{pn}}{dQ^2 dy} \sim (\frac{2}{3})^2 \left[u_A \bar{d}_B + \bar{u}_A d_B \right] + (-\frac{1}{3})^2 \left[d_A \bar{u}_B + \bar{d}_A u_B \right] + \text{ smaller terms}$

If deuterium binding corrections are neglected: $q_d(x) \approx q_p(x) + q_n(x)$

At $x_A \gg x_B$ (large y): $\bar{q}(x_A) \sim 0$ and $4u(x_A) \gg d(x_A)$

$$\frac{\sigma_{pd}}{2\sigma_{pp}} \approx \frac{1}{2} \frac{(1 + \frac{d_A}{4u_A})[1 + r]}{(1 + \frac{d_A}{4u_A}r)} \approx \frac{1}{2}(1 + r), \text{ where } r \equiv \overline{d}(x_B)/\overline{u}(x_B)$$

 $\therefore \sigma_{pd}/(2\sigma_{pp})$ constrains $\bar{d}(x,Q)/\bar{u}(x,Q)$ at moderate x

The recent PDF fits (e.g., CTEQ5M) quantitatively account for the violation of SU(2) symmetry in the quark sea

0.7

Pavel Nadolsky (ANL)

0.2

0.3

√τ

0.4

10

10

10

CTEQ summer school

Lecture 2

PRL, 80, 3715 (1998)

Theory curves reflect different assumptions about $\overline{d}/\overline{u}$

02

0.25 0.3

0.35

Low-Q Drell-Yan			W & Z	Resu	Resummation	
Particle	sta	tes p	orobe	d by Drell-'	Yan-like p	rocesses
	<u>γ</u> * →	J/ψ ↓	Y ↓	W ↓ H	Z',G _{RS} ,	
				P	article mass (GeV)	
	11	Ť	10	100 †	1000	

t

W and Z boson production

с

good convergence of the α_s series

b

- small backgrounds
- separation of PDF flavors (via the CKM matrix)
- sensitivity to new physics

Fig. 9.5. The lepton pair cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.8$ TeV, with CDF data from ref. [12] (open circles) and ref. [13] (solid circles). The curve is the next-to-leading-order QCD prediction using the parton distributions from ref. [9]

Z pole and γ^* continuum in $\ell^+\ell^-$ production

8

Leptonic vs. hadronic decay modes

The W and Z branching ratios $Br_i \equiv \Gamma_i / \Gamma$ are

Br $[W \to \ell \nu_{\ell}] \approx 3 \times 11\%$, Br $[W \to \text{jets}] \approx 68\%$

Br $[Z \rightarrow \ell^+ \ell^-] = 3 \times 3.36\%$, Br $[Z \rightarrow \nu_\ell \bar{\nu}_\ell] = 3 \times 6.67\%$, Br $[Z \rightarrow \text{jets}] \approx 70\%$

At \sqrt{s} of a few TeV, hadronic W, Z decays cannot be observed because of the large background (mostly $qg, gg \rightarrow jets$)

Despite small branching ratios, the only viable decay modes are

 $\blacksquare Z \to e^+e^-, Z \to \mu^+\mu^-$

■ $W \rightarrow e + \nu_e, W \rightarrow \mu + \nu_{\mu}$, with neutrinos identified by missing transverse energy E_T

Consider $AB \to (W^+ \to e^+\nu_e)X$ decay in the lab frame. The most probable transverse momentum Q_T of the W boson is

a) $Q_T = \sqrt{s}/2$ b) $Q_T = |\vec{p}_T^e| + E_T$ c) $Q_T = 0$ d) $Q_T = 2 - 5$ GeV, depending on \sqrt{s}

Consider $AB \to (W^+ \to e^+\nu_e)X$ decay in the lab frame. The most probable transverse momentum Q_T of the W boson is

The LO condition $Q_T = 0$ (corresponding to no QCD radiation) is never realized because of self-suppression of very soft QCD contributions (Sudakov suppression). To predict $d\sigma/dQ_T$ at $Q_T \ll Q \sim M_W$, one needs to resum such soft contributions to all orders in α_S .

Consider $AB \to (W^+ \to e^+\nu_e)X$ decay in the lab frame. The most probable transverse momentum p_T^e of the positron is

a) $p_T^e = 0 - 5$ GeV b) $p_T^e \approx 40$ GeV c) $p_T^e \approx 80$ GeV d) $p_T^e = Q_T/2$

Consider $AB \to (W^+ \to e^+\nu_e)X$ decay in the lab frame. The most probable transverse momentum p_T^e of the positron is

a) $p_T^e = 0 - 5 \text{ GeV}$ b) $p_T^e \approx 40 \text{ GeV} = M_W/2$ c) $p_T^e \approx 80 \text{ GeV}$ d) $p_T^e = Q_T/2$

 $d\sigma/dp_T^e$ has a kinematical (Jacobian) peak,

• ...located exactly at $p_T^e = M_W/2$ if $Q_T = 0$ and $Q = M_W$

...smeared by higher-order EW and soft QCD corrections

Pavel Nadolsky (ANL)

The origin of the Jacobian peak

In the
Collins-Soper
W rest frame,
for
$$Q = M_W$$
:
 $p_T^e = |\vec{p_1}| \sin \theta_* = \frac{M_W}{2} \sin \theta_*$
 $\frac{d\sigma}{d \cos \theta_*} = \sum_j F_j(Q, Q_T, y) a_j(\theta_*, \varphi_*)$

 $a_1 = 1 + \cos^2 \theta_*, a_2 = 2 \cos \theta_*,$ etc. (smooth functions)

$$\frac{d\sigma}{dp_T^e} = \underbrace{\left| \frac{d\cos\theta_*}{dp_T^e} \right|}_{\text{Jacobian}} \frac{d\sigma}{d\cos\theta_*} = \frac{1}{\sqrt{1 - \left(\frac{2p_T^e}{M_W}\right)^2}} \frac{4p_T^e}{M_W^2} \frac{d\sigma}{d\cos\theta_*}$$

$$rac{d\sigma}{dp_T^e}
ightarrow \infty$$
 if $p_T^e
ightarrow M_W/2$ (!)

The origin of the Jacobian peak

If
$$Q_T = 0$$
: (p_T^e) lab frame $= (p_T^e)$ CS frame

(the boost from the CS frame to the lab frame is along the z-axis)

Corrections to $d\sigma/dp_T^e$ are of order

■ $\mathcal{O}(Q_T/Q)$ due to the boost \Rightarrow sensitivity to the shape of $d\sigma/dQ_T$ (soft radiation) at $Q_T \ll Q$

A similar Jacobian peak is present in $d\sigma/dp_T^{
u}$

Pavel Nadolsky (ANL)

Lepton transverse mass

Definition

 $M_T^{e
u}\equiv 2(p_T^ep_T^
u-ar{p}_T^e\cdotar{p}_T^
u)$ in the lab frame (Smith, van Neerven, Vermaseren, 1983)

Exercise

Assuming $Q_T=$ 0, verify that there is a Jacobian peak in $d\sigma/dM_T^{e\nu}$ at $M_T^{e\nu}=M_W$

Corrections to $d\sigma/dM_T^{e\nu}$ are of order $\mathcal{O}(Q_T^2/Q^2) \Rightarrow$ reduced sensitivity to small- Q_T soft contributions

■ $d\sigma/dM_T^{e\nu}$, $d\sigma/dp_T^e$, and $d\sigma/dp_T^{\nu}$ are important observables. They are commonly used to measure M_W . Γ_W is found from $d\sigma/dM_T^{e\nu}$ at large $M_T^{e\nu}$

W and Z production as a "luminosity monitor"

(Dittmar, Pauss, Zurcher; Khoze, Martin, Orava, Ryskin; Giele, Keller';...)

Cross sections for $pp \to W^{\pm}X$, $pp \to Z^0X$ at the LHC can be measured with accuracy $\delta\sigma/\sigma \sim 1\%$ (tens of millions of events even at low luminosity)

These measurements can be employed to

- measure all other LHC cross sections in units of $\sigma_{W,Z}^{LHC}$
- \blacktriangleright measure magnitudes of $\sigma^{LHC}_{W,Z}$; use them to monitor the LHC luminosity in real time
- precisely measure PDF's (parton luminosities); reduce theory uncertainties for tiny new physics signals and huge SM backgrounds

The accuracy of luminosity monitoring in $p\bar{p}$ elastic scattering at the Tevatron is of order 5%

Theoretical aspects of luminosity monitoring

Several factors contribute to W & Z cross sections at a percent level, including

- $\square O(\alpha_s^2)$, or NNLO, QCD corrections
- $\square O(\alpha)$, or NLO, EW corrections
- PDF uncertainties
- Experimental acceptance
- QCD and EW showering (all-orders resummations)

Sometimes, these effects (e.g., PDF dependence or constant *K*-factors) may cancel in ratios, but in many cases they do not

Ratios of W and Z cross sections

Radiative contributions, PDF dependence have similar structure in W, Z, and alike cross sections; cancel well in Xsection ratios

σ_Z vs. σ_W at NLO for various PDF sets

However, the PDF errors for cross sections themselves are still very appreciable

CTEQ6.5/CTEQ6.1~1.07

■ reflects a 7% increase in parton luminosities $\mathcal{L}_{q_i\bar{q}_j}(x_1, x_2, Q) = q_i(x_1, Q)\bar{q}_j(x_2, Q)$ in the relevant x and Qranges for u, d, s quarks (consequence of improved treatment of heavy-flavor masses in DIS at HERA)

Pavel Nadolsky (ANL)

Charged lepton asymmetry at the Tevatron

$$A_{ch}(y_e)\equiv rac{d\sigma^{W^+}}{dy_e}-rac{d\sigma^{W^-}}{dy_e} +rac{d\sigma^{W^-}}{dy_e} +rac{d\sigma^{W^-}}{dy_e}$$

related to the boson Born-level asymmetry when y_e is large

$$A_{ch}(y) \stackrel{y \to y_{max}}{\longrightarrow} rac{r(x_B) - r(x_A)}{r(x_B) + r(x_A)}, \ r(x) \equiv rac{d(x, M_W)}{u(x, M_W)}$$

constrains the PDF ratio $d(x, M_W)/u(x, M_W)$ at $x \to 1$

In experimental analyses, a selection cut $p_{Te} > p_{Te}^{min}$ is imposed

Charge asymmetry in p_T^e bins (CDF Run-2)

With p_{Te} cuts imposed, $A_{ch}(y_e)$ is sensitive to small- Q_T resummation

Pavel Nadolsky (ANL)

Factorization for inclusive cross sections

Scale dependence of the renormalized QCD charge $g(\mu)$ and fermion masses $m_f(\mu)$:

$$\mu \frac{dg(\mu)}{d\mu} = \beta(g(\mu)), \qquad \mu \frac{dm_f(\mu)}{d\mu} = -\gamma_m(g(\mu))m_f(\mu)$$

The RG equations predict that $\alpha_s(\mu) \to 0$ and $m_f(\mu) \to 0$ as $\mu \to \infty$

These features are employed to prove factorization for inclusive Drell-Yan cross sections (Bodwin, PRD 31, 2616 (1985); Collins, Soper, Sterman, NPB 261, 104 (1985); B308, 833 (1988)):

$$\frac{d\sigma(Q,\{m_f\})}{d\tau} = \sum_{a,b} \int_{x_A}^1 d\xi_A \int_{x_B}^1 d\xi_B \frac{d\widehat{\sigma}\left(\frac{Q}{\mu}, \frac{\tau}{\xi_A \xi_B}, \{m_f = 0\}\right)}{d\tau} f_{a/A}(\xi_A, \mu) f_{b/B}(\xi_B, \mu) + \mathcal{O}\left(\left\{m_f^2/\mu^2\right\}\right)$$

assuming $\mu \sim Q \sim \sqrt{s} \gg \{m_f\}, \Lambda_{QCD}$

Factorization for inclusive cross sections

$$\frac{d\sigma(Q, \{m_f\})}{d\tau} = \sum_{a,b} \int_{x_A}^1 d\xi_A \int_{x_B}^1 d\xi_B \frac{d\widehat{\sigma}\left(\frac{Q}{\mu}, \frac{\tau}{\xi_A \xi_B}, \{m_f = 0\}\right)}{d\tau} f_{a/A}(\xi_A, \mu) f_{b/B}(\xi_B, \mu) + \mathcal{O}\left(\left\{m_f^2/\mu^2\right\}\right)$$

- The hard cross section $\hat{\sigma}$ is infrared-safe: $\lim_{\{m_f \to 0\}} \hat{\sigma}(\{m_f\})$ is finite and can be computed as a series in $\alpha_s(\mu)$
- Collinear logarithms are subtracted from $\hat{\sigma}$ and resummed in $f(\xi, \mu)$ using DGLAP equations
- Soft-gluon singularities in ô vanish when the sum of all Feynman diagrams is integrated over all phase space (Kinoshita-Lee-Nauenberg theorem)

Factorization for Q_T distributions

Differential distributions may still contain integrable soft singularities of the type $\alpha_s^k \ln^m (Q^2/p_i \cdot p_j)$, e.g., $L \equiv \ln(Q^2/Q_T^2) \gg 1$:

$$\begin{split} \left. \frac{d\sigma}{dQ_T^2} \right|_{Q_T \to 0} &\approx \quad \frac{1}{Q_T^2} \Big\{ & & \\ & & \alpha_S \left(L + 1 \right) \\ & + & \alpha_S^2 \left(L^3 + L^2 + L + 1 \right) \\ & + & \alpha_S^3 \left(L^5 + L^4 + L^3 + L^2 + L + 1 \right) \\ & + & \dots \Big\}. \end{split}$$

The purpose of Q_T resummation is to reorganize this series as

$$\left. \frac{d\sigma}{dQ_T^2} \right|_{Q_T \to 0} \approx \frac{1}{Q_T^2} \left\{ \alpha_S Z_1 + \alpha_S^2 Z_2 + \dots \right\},$$

where $\alpha_S^{n+1}Z_{n+1} \ll \alpha_S^n Z_n$:

$$\begin{array}{rcl} \alpha_S Z_1 & \sim & \alpha_S (L+1) + \alpha_S^2 (L^3 + L^2) + \alpha_S^3 (L^5 + L^4) + \ldots & | A_1, B_1, \mathcal{C}_0 ; \\ \alpha_S^2 Z_2 & \sim & \alpha_S^2 (L+1) + \alpha_S^3 (L^3 + L^2) + \ldots & | A_2, B_2, \mathcal{C}_1 ; \\ \alpha_S^3 Z_3 & \sim & \alpha_S^3 (L+1) + \ldots & | A_3, B_3, \mathcal{C}_2 . \end{array}$$

QCD factorization at large and small Q_T

Finite-order (FO) factorization

Small- q_T factorization

 $\Lambda^2_{OCD} \ll q_T^2 \sim Q^2$

Factorization at $Q_T \ll Q$ (Collins, Soper, Sterman, 1985)

Realized in space of the impact parameter b

$$\frac{d\sigma_{AB\to VX}}{dQ^2 dy dq_T^2} \bigg|_{q_T^2 \ll Q^2} = \sum_{flavors} \int \frac{d^2 b}{(2\pi)^2} e^{-i\vec{q}_T \cdot \vec{b}} \widetilde{W}_{ab}(b, Q, x_A, x_B)$$
$$\widetilde{W}_{ab}(b, Q, x_A, x_B) = |\mathcal{H}_{ab}|^2 \ e^{-\mathcal{S}(b,Q)} \overline{\mathcal{P}}_a(x_A, b) \overline{\mathcal{P}}_b(x_B, b)$$

 \mathcal{H}_{ab} is the hard vertex, S is the soft (Sudakov) factor, $\overline{\mathcal{P}}_{a}(x,b)$ is the unintegrated PDF

For $b \ll 1 \text{ GeV}^{-1}$, $\widetilde{W}_{ab}(b, Q, x_A, x_B)$ is calculable in perturbative QCD; at $Q \sim M_Z$, this region dominates the resummed cross section

Pavel Nadolsky (ANL)

Nonperturbative contributions at large b

At $b \gtrsim 1 \text{ GeV}^{-1}$, the leading nonperturbative contribution is approximated as $\exp(-a(Q)b^2)$, where a(Q) is an effective "nonperturbative parton $\langle k_T^2 \rangle / 4$ " inside the proton

The RG invariance suggests that

 $a(Q) \approx a_1 + a_2 \ln Q,$

where $a_{1,2} \sim \Lambda^2_{QCD}$, and a_2 is process-independent

The $\ln Q$ growth of a(Q) is indeed observed in the Drell-Yan and $Z p_T$ data

An example of the resummed cross section Z production at the Tevatron vs. resummed NLO (Balazs, Ladinsky, PN, Yuan)

In this case, precise predictions for $d\sigma/dQ_T$ are needed to measure M_W with accuracy better than 0.03%

Pavel Nadolsky (ANL)

New physics at Q > 100 GeV

Indirect constraints from electroweak precision measurements

direct new physics searches

 $W' \to \ell \nu$

Pavel Nadolsky (ANL)

Pavel Nadolsky (ANL)

Higgs sector in Standard Model & supersymmetry

In these models, expect one or more Higgs bosons with mass below 140 GeV

Many other possibilities for EW symmetry breaking exist!

Pavel Nadolsky (ANL)

W & 2

Higgs sector in Standard Model & supersymmetry

- the goal of direct and indirect measurements is to over-constrain SM, greatly constrain SUSY
 - indirect constraints strongly depend on M_W , m_t values, hence require accurate QCD predictions for W and t production

For example, in SM

$$\begin{split} M_W &= 80.3827 - 0.0579 \ln\left(\frac{M_H}{100 \text{ GeV}}\right) - 0.008 \ln^2\left(\frac{M_H}{100 \text{ GeV}}\right) \\ &+ 0.543 \left(\left(\frac{m_t}{175 \text{ GeV}}\right)^2 - 1\right) - 0.517 \left(\frac{\Delta \alpha_{had}^{(5)}(M_Z)}{0.0280} - 1\right) - 0.085 \left(\frac{\alpha_s(M_Z)}{0.118} - 1\right) \end{split}$$
avel Nadolsky (ANL)
CTEQ summer school
Lecture 2
June 4, 2007

ow-Q Dreil-Yan

SM Higgs boson search at the LHC

Production rate

Branching ratios

Let's concentrate on $gg \rightarrow H \rightarrow \gamma\gamma$, the leading search mode for $M_H < 140$ GeV (besides vector boson fusion and $t\bar{t}H$ production)

$$gg \rightarrow \text{Higgs} \rightarrow \gamma \gamma$$

The scattering proceeds via a top quark loop, which can be replaced by an effective point vertex under the assumption $m_t^2 \gg m_H^2$ (works well for $m_H \lesssim 350$ GeV). This trick greatly simplifies calculations, which can be carried out up to two gluon loops (as in the Drell-Yan process). Many techniques developed for the Drell-Yan process also apply to Higgs production

Scale dependence of rapidity distributions

Q_T Resummation

 Q_T resummation for Higgs bosons has been carried out by several groups, and they are in a reasonable agreement (Balazs, Yuan; Berger, Qiu; Bozzi et al.; Kulesza, Stirling; Kulesza, Sterman, Vogelsang)

Resummed distributions for Higgs $\rightarrow \gamma \gamma$ signal and

Pavel Nadolsky (ANL)

Summary

Essential applications of Drell-Yan-like processes

- clean tests of QCD factorization
- studies of the nucleon structure (quark sea, flavor separation,...)
- "standard candle" processes (luminosity monitors....)
- electroweak precision measurements
- searches for new physics

Many interesting topics were not covered

- Polarized Drell-Yan-like processes (measurements of new nucleon structure functions)
- **Connections** to k_T factorization in semi-inclusive DIS
- Various resummations (small x, threshold, heavy-quark....)
- Higher-twist and nuclear effects in low-Q Drell-Yan and heavy-ion scattering

Many exciting studies still remain to be done!

Backup slides

W and Z signal in the hadron decay mode at SPS and Tevatron

Impact of charm contributions to DIS at HERA

CTEQ6.5 employs a more accurate calculation of charm mass effects (general-mass factorization scheme) in DIS structure functions $F_i(x, Q^2)$ at HERA

■ W,Z production at the LHC: $x \sim 10^{-3} - 10^{-2}$

Suppression of charm contribution to $F_2(x, Q^2)$ in CTEQ6.5 results in larger ${u \choose u}(x)$, ${d \choose d}(x)$ at small $x \Rightarrow$ larger $\sigma_{W,Z}^{LHC}$

 $\frac{\delta \bar{q}_{light}(x)/\bar{q}_{light}(x) = 3 - 4\% \quad \Rightarrow \quad \delta \mathcal{L}_{q_i \bar{q}_j}/\mathcal{L}_{q_i \bar{q}_j} = 2(\delta \bar{q}_{light}/\bar{q}_{light}) = 6 - 8\%$ Pavel Nadolsky (ANL) CTEQ summer school Lecture 2 June 4, 2007

Heavy Quark Loops

Somewhat surprisingly, gluon fusion via a virtual top-quark loop dominates Higgs production at hadron colliders.

$$\sigma_{\rm LO}(gg \to H) = \frac{\pi G_{\rm F}}{128\sqrt{2}} \left(\frac{\alpha_s(\mu)}{\pi}\right)^2 \tau^2 |1 + (1 - \tau)f(\tau)|^2 \delta\left(1 - \frac{M_{H}^2}{\hat{s}}\right)$$

$$f(\tau) = \begin{cases} \arcsin^2 \frac{1}{\sqrt{\tau}}, & \tau \ge 1, \\ -\frac{1}{4} \left[\ln \frac{1+\sqrt{1-\tau}}{1-\sqrt{1-\tau}} - i\pi \right]^2, & \tau < 1, \end{cases} \qquad \tau = 4M_l^2/M_H^2,$$

Light Higgs boson search at the LHC

■ $gg \rightarrow h \rightarrow \gamma\gamma$ (via a *t*-quark loop) is the leading search mode for $115 \leq M_H \leq 140 \text{ GeV}$

A 5σ discovery of SM Higgs boson is possible with $\mathcal{L} = 10 - 30$ fb⁻¹

■ $\delta M_H \leq 1$ GeV, $\delta \sigma (H \rightarrow \gamma \gamma) \sim 20\%$ within the experimental reach at later stages?

Light Higgs boson search at the LHC

■ $gg \rightarrow h \rightarrow \gamma\gamma$ (via a *t*-quark loop) is the leading search mode for $115 \lesssim M_H \lesssim 140 \text{ GeV}$

A 5σ discovery of SM Higgs boson is possible with $\mathcal{L} = 10 - 30$ fb⁻¹

■ $\delta M_H \lesssim 1$ GeV, $\delta \sigma (H \rightarrow \gamma \gamma) \sim 20\%$ within the experimental reach at later stages?

Statistical significance depends on the (new) physics model, QCD contributions, etc.

A challenging measurement!

Pavel Nadolsky (ANL)

CTEQ summer school

Lecture 2