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 Introduction
 QCD
 ee, ep, pp Processes – History of Jets
 What is a Jet?

 Jet Algorithms 
 Jet Reconstruction, Calibration, Performance
 Jet Characteristics

 Jet Energy Profile
 Quark and Gluon Jets 
 Color Coherence Effects

 Jet Production at Hadron Colliders (Tevatron & LHC)
 Underlying Event
 Event Shapes
 Dijet Azimuthal Decorrelation & Angular Distributions
 Inclusive Jet Cross Section
 Dijet Mass 

 Summary
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 Pointlike fermions called quarks
 Six different “flavors” (u, d, c, s, t, b)

 Quarks carry “color” − analogous to electric charge
 There are three types of color (red, blue, green)

 Mediating boson is called gluon − analogous to photon

Similar to QED …

… but different 
u

d

u

Proton

gluons

quarks

Partons = quarks & gluons

Coupling constant → as (analogous to α in QED)
Free particles (hadrons) are colorless

 Gluons carry two color “charges” and can interact to 
each other − very important difference from QED 
 from Abelian to non-Abelian theory
 Color charge is conserved in quark-quark-gluon vertex

 At large distances: parton interactions become large 
(confinement)

 At small distances: parton interactions become small     
(asymptotic freedom)
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UA1 Detector
First W event

1992: 1st CTEQ Summer School 

PEP-II, SLAC, Palo Alto, USA
e-e+ collider

HERA, DESY, Hamburg, Germany
ep collider
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Discover quark jets
Determine quark spin

Discover gluon jets, measure αs
Determine spin of gluon

Establish gluon self-coupling
Non-abelian structure of QCD

7
Search for the Higgs

 QCD Studies
 Measurements of αs
 Fragmentation functions
 SU(3) gauge structure of OCD
 Color factors/spin dynamics
 Quark-gluon jet properties/differences
 Event shapes

 Searches for the Higgs
 Searches for new physics
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e+e− −> µ+µ− e+e− −> qq e+e− −> qqg

 No Initial State Radiation
 No beam remnants
 No multiple scatterings 
 Important role in establishing QCD
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Direct 
photoproduction

Resolved 
photoproduction

 QCD Studies
 Measurements of αs
 Fragmentation functions
 Photon Structure
 Color/spin dynamics
 Quark-gluon jet properties
 Event shapes
 Parton Distribution Functions
 Inclusive- and Multi-jet 

production
 Rapidity Gaps/Diffraction

 Searches for new physics
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 Proton beams can be accelerated to very high energies (good)
 But the energy is shared among many constituents – quarks and gluons 

 “scan” of wide range of ŝ (good and bad)

 To select the interesting collisions: look for outgoing 
particles produced with high momentum perpendicular to 
the beam (“transverse momentum”) → hard collisions
• Hard collisions take place at small impact parameter – these are collisions 

between partons inside the two protons
• Analog of Rutherford’s experiment
• Forms the basis of the on-line event selection (“triggering”)

Transverse
momentum Tp≡
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Tevatronat  TeV 2)( =pps
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Underlying
Event

u

u

d

g
q

q d

Hard Scatter
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u

Complications from the e+e−

due to:
– Parton Distribution 

Functions (PDFs)
– “Colored” initial and

final states
– Remnant jets -

Underlying event (UE)
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 QCD Studies
 Measurements of as
 Fragmentation functions
 Parton Distribution 

Functions
 Color/spin dynamics
 Quark-gluon jet properties
 Event shapes
 Inclusive- and Multi-jet 

production
 Rapidity Gaps/Diffraction
 Production of Vector Bosons 

+ jets
 Study of heavy particles (e.g. 

top production)
 Searches for Higgs
 Searches for new physics
 And much more … 
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Where the data for extracting PDFs are coming from?
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more on that later…
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Rapidity (y) and Pseudo-rapidity (η)

LAB System ≠ parton-parton
CM system
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Transverse Energy/Momentum
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Whatever objects the jet
algorithm finds!
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 Colored partons from the hard scatter evolve via soft quark and gluon 
radiation and hadronization process to form a “spray” of roughly collinear 
colorless hadrons −> Jets

 Jets manifest themselves at localized clusters of energy (or particles)
 Jets are the experimental signatures of quarks & gluons
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First experimental evidence of quark-initiated jets 
in e+e- annihilations, SLAC-SPEAR at Ecm ~ 7 GeV
G. Hanson et al. (MARK-I Collab), PRL 35, 1609 (1975) 

Gluon-initiated jets were discovered in e+e−

annihilations at DESY-PETRA at Ecm > 15 GeV
MARK-J Collab., PRL 43, 830 (1979); TASSO Collab., Phys. Lett. B86, 
243 (1979); PLUTO Collab., Phys. Lett. B86, 418 (1979);
JADE Collab., Phys. Lett. B91, 142 (1980)

gqqee →−+
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The goal is to apply the “same” jet clustering 
algorithm to data and theoretical calculations 
without ambiguities 
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2-jet final state
1 parton/jet

outgoing parton
Hard scatter

Parton showering

multi-jet final state

Jets at the “Parton Level” (i.e., before 
hadronization) 
 Fixed order QCD or (Next-to-) leading logarithmic 

summations to all orders

2 → 2 process
LO QCD
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The idea is to come up with a jet algorithms 
which minimizes the non-perturbative
hadronization effects 

Hard scatter

Fragmentation process

Jet

outgoing parton

hadrons

Parton showering
+ Hadronization
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Jets at the “Detector Level”:
 Calorimeter - clusters of energy “towers”
 Tracking - clusters of tracks
 Combination of detectors 

 Particle Flow
 Calorimeter + Tracks
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 Theoretical:
– Infrared safety
– Collinear safety

– Low sensitivity to hadronization
– Invariance under boosts
– Same jets at parton/particle/detector levels

 Experimental:
– Detector independence 
– Minimization of resolution effects
– Stability with Luminosity
– Computational efficiency
– Maximal reconstruction efficiency

Tevatron RunII report: hep-ex/0005012 
Tev4LHC report:         hep-ph/0610012
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Types of jet clustering:
KT: cluster objects close in relative pT
Irregular shape, issue for calibration
Used extensively at LEP and HERA

Cone: cluster objects close in angle
Simple shape, unless jets overlap
Used primarily at hadron colliders
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Gavin Salam’s lectures
CTEQ 2008
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Most widely-used jet algo in e+e-
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 kT jets are infrared 
and collinear safe

 There are no 
overlapped jets

 Every particle, or 
detector tower is 
unambiguously 
assigned to a 
single jet

 No biases from 
seed towers

 kT jets are 
sensitive to soft 
particles and area 
could depend on 
pile-up S.D.Ellis, D.Soper, PRD 48, 3160 (1993)
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 Fast kT Algorithm improves speed from O(N3) to O(N lnN)
 G.Salam, M.Cacciari, Phys. Lett. B641, 41 (2006)
 Add ghost particles to determine the area of jets

 Could be used to subtract pile-up contributions
 Already adopted as the default kT algorithm at LHC

 Other recombination algorithms:

 p=1   regular kT jet algorithm
 p=0   Cambridge/Aachen jet algorithm

 Dokshitzer, Leder, Moretti, Webber ’97 (Cambridge) – Wobisch, Wengler ’99 (Aachen)
 p=-1  “Anti-kT” jet algorithm 

 Cacciari, Salam, Soyez ’08
 Soft particles will first cluster with hard particles before among themselves
 Almost a cone jet near hard partons

 No merge/split
 Currently under consideration by CMS (already adopted by ATLAS)

2

2
ij2p

jT,
2p

iT,ij D
ΔR

)p,min(pd =2p
iT,ii pd =
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Snowmass (1990)



54CTEQ Summer School 2009Nikos Varelas

 Problems with the Legacy (Snowmass) Cone 
Algorithm: 
 Sensitivity to infrared and collinear radiation
 Not proper 4-vector kinematics used in particle clustering 

and in calculating the final jet parameters (produced 
massless jets)

 The Solution:  Develop the Midpoint Jet Algorithm
 Approximates a seedless algorithm
 Infrared safe at NLO (inclusive jets)
 Proper 4-vector kinematics used in all steps −> massive 

jets
 Midpoint Algorithm is used at Tevatron Run II 

(available also at CMS/ATLAS)
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 kT jets cluster more particles away from the jet 
centroid than cone jets

 kT jets have more particles than cone jets
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 Infrared safety on Midpoint jets works well for 2 −> 3 hard-parton final 
state BUT not for 2 −> 4 when 3 hard partons could cluster to one jet

 pT threshold on seeds is collinear unsafe
 Seed approach  stable cones missed  infrared unsafety

 Infrared safety is important for 
reliable pQCD predictions
 cancelation of real & virtual 

divergences 
 Detector imperfections could 

have an impact to infrared 
unsafe jet algorithm
 Thresholds, magnetic field 

effects to soft particles
 Calorimeter tower 

segmentation (i.e., two 
particles hit a single tower, one 
particle showers to two towers)

 Spurious seeds (pile-up, noise)
Solution:  Seedless Cone Algorithm



58CTEQ Summer School 2009Nikos Varelas

 Seedless: no seeds – all stable cones are considered
 Merge/Split: still applied at the end
 Collinear & Infrared safe: now it is added to the name – Seedless Infrared 

Safe Cone jet algorithm (SISCone) 
 G.Salam, G.Soyez, arXiv:0704.0292, April 2007

 Simple approach: take all possible sub-sets of N particles in the event 
and final all stable cones
 CPU time ~ O(N2N) – 1017 years for N=100 (unrealistic!) 

 SISCone approach: use geometry to find all distinct circular enclosures 
of a set of points (particles)

 CPU time ~ O(N2lnN) 
 Similar speed with Midpoint with seeds >1 GeV
 Slower than Fast kT

See Gavin Salam’s lectures
at CTEQ 2008
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 Test process 24 partons
 Midpoint(0 or 1) = seed threshold at 0 or 1 GeV

Diffs up to 6/%

Diffs up to <15%

Diffs up to 2%
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 SISCone is the slowest algorithm 
 Fast-kT and Iterative Cone have similar timing performance

 Iterative Cone is used in the CMS High Level Trigger

CMS-JME-07-003
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 There is no such thing as “Best Jet Algorithm”
 There are several algorithms available and they are not 

equivalent
 It is difficult for an experiment to fully support many algorithms

 Be careful about Infrared and Collinear Safety
 It is easier to think in terms of partons

 The most commonly used (so far) jet clustering algorithms:
 Iterative Cone (IC) (CMS)
 JetClu (CDF/ATLAS)
 SISCone (LHC)
 Midpoint (Tevatron/LHC)
 (Fast) kT (Tevatron/LHC)



62CTEQ Summer School 2009Nikos Varelas

 Introduction
 QCD
 ee, ep, pp Processes – History of Jets
 What is a Jet?

 Jet Algorithms 
 Jet Reconstruction, Calibration, Performance
 Jet Characteristics

 Jet Energy Profile
 Quark and Gluon Jets 
 Color Coherence Effects

 Jet Production at Hadron Colliders (Tevatron & LHC)
 Underlying Event
 Event Shapes
 Dijet Azimuthal Decorrelation & Angular Distributions
 Inclusive Jet Cross Section
 Dijet Mass 

 Summary



63CTEQ Summer School 2009Nikos Varelas

Generic Detector
Muon chambers

Hadronic calorimeter

Electromagnetic calorimeter

Tracking detector

µ

e
n

p

ν

γ
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HCAL

Magnet

Tracker

Muon 
chambers

ECAL
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 Calorimeter Jets
 Clustering of energy depositions
 EM+HAD towers

 Track Jets
 Clustering of tracks
 Sampling only charged particles

 JetPlusTrack
 Calorimeter jets with energy corrections based 

on tracks
 Particle Flow (PFlow)

 Clustering of identified particles
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 Triggering on Jets
– reduce rate from ~2-40 106 to ~100 Hz (multiple triggering stages)
– implement fast/crude jet clustering algorithms for low level triggers

 Selection of a Jet Algorithm
– at detector, particle, parton/NLO++ level

 Jet Reconstruction, Selection, and Trigger Efficiencies
 Jet Calibration

– corrections back to particle jet (detector response, pile-up,…) 
– parton showering, hadronization, and multiple interaction effects

 Jet Energy/Position Resolutions
– difficulties with low-pT region and near reconstruction threshold
– unsmearing of observables

 Simulation of Jet/Event/Detector Characteristics
– precision of detector modeling vs CPU time
– ability to overlay zero/minimum-bias events from data 
– tuning of fragmentation model, selection of PDF, hard scale parameter Q, …
– Interface a ME event generator with a parton-shower simulation
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 Jet energies are calibrated to 
particle level

 Offset: noise, pile-up, multiple pp 
interactions

 Rresponse:  fraction of particle jet 
energy deposited in the 
calorimeter
 measured in situ using pT

balance in γ/Z+jet events
 Out of Cone Showering: account 

for energy emitted inside (outside) 
the jet cone but showered outside 
(inside) the calorimeter jet cone

ge_ShowerinOut_of_Con ×
−

=
response

calo
Tpart

T R
Offsetpp

Jet Energy Uncertainty ~ 1%

example
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CMS-JME-07-002
example
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Mjj or
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CMS-JME-08-001

 Tracking momentum is more accurate than calorimeter 
measurement for up to several hundreds of GeV

 The charged energy fraction in jets is about 60%
 With significant resolutions ~0.3 fch

 Cluster tracks pointing to the vertex

φ Resolution

η Resolution

Jet Energy Response
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CMS-PFT-09-001
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CMS-PFT-09-001
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CMS-PFT-09-001
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η Resolution @ HB φ Resolution @ HB

Jet Energy Resolution @ HB Jet Energy Response @ HB

PFlow

CaloJet
51<η .
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 Motivation:
 Jet shapes probe the transition between a parton

produced in the hard process and the observed spray of 
hadrons 

 Sensitive to the quark/gluon jet mixture
 Test of parton shower event generators at non-

/perturbative levels  
 Useful for jet algorithm development and tuning  

 Challenges
 Dependence on parton shower and hadronization

models
 Corrections need to be examined for different 

tunes/generators
 Sensitive to particle calibration at low energies

 MC tuning of calorimeter and tracker is critical
 Sensitive to detector resolution, noise, pile-up effects
 Sensitive to initial state radiation effects and the 

underlying event

xT

Mostly Quark Jets

Mostly Gluon Jets
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 Test of parton shower event generators at non-

/perturbative levels  
 Useful for jet algorithm development and tuning  

 Challenges
 Dependence on parton shower and hadronization

models
 Corrections need to be examined for different 

tunes/generators
 Sensitive to particle calibration at low energies

 MC tuning of calorimeter and tracker is critical
 Sensitive to detector resolution, noise, pile-up effects
 Sensitive to initial state radiation effects and the 

underlying event

Gluon Jets

Quark Jets

pp @ 14 TeV
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( )rΨ

Definition:  Integrated Jet Shape is defined as the average 
fraction of jet transverse momentum that lies inside a 
cone of radius r concentric to the jet axis

∑=Ψ
jets T

T

jets Rp
rp

N
r

),0(
),0(1)(

1-Ψ(r)

Quark jets are narrower 
than gluon jets

1)( =Ψ R pQCD Contributions

radiation inside 
the jet

Soft radiation from 
outside the jet
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Gluon enriched jets (low-x/low-pT jets at Tevatron) are 
“broader” (i.e. less collimated, higher multiplicity of soft 

energy particles) than Quark-enriched jets (high-x/high-pT jets)

Consistent with results from LEP and HERA
(a Jet is a Jet no matter where you measure it!) 
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Data vs MC Predictions Gluon  Quark jets
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Quark jets are
narrower than

Gluon jets
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Gluon  Quark jets

CMS-QCD-08-005

TeV 14=s
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“Traditional Approach” 
 Shower develops according to pQCD into spray of partons until a 

scale of Q0 ~ 1 GeV
 Thereafter, non-perturbative processes take over and produce 

the final state hadrons
 Coherence effects are included probabilistically (e.g., Angular 

Ordering, color dipole) and in the hadronization model

DGLAP Splitting Kernel
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“Traditional Approach” 
 Shower develops according to pQCD into spray of partons until a 

scale of Q0 ~ 1 GeV
 Thereafter, non-perturbative processes take over and produce 

the final state hadrons
 Coherence effects are included probabilistically (e.g., Angular 

Ordering, color dipole) and in the hadronization model

“Local Parton Hadron Duality (LPHD) Approach”
Parton cascade is evolved further down to a scale of about 

Q0 ~ 250 MeV.
 No hadronization process;  Hadron spectra = Parton 

spectra
Simplicity.  Only two essential parameters (ΛQCD and Q0) 

and an overall normalization factor
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 Event Generator: a (“C++”  or “Fortran”) program that 
tries to simulate Nature!

 Events vary from one to the next (random numbers)
 Goal: reproduce average behavior and fluctuations of 

data 
 But using many parameters that need to be tuned to data…

 Event Generators typically include:
 Parton Distribution functions (PDF)
 Initial state radiation (ISR)
 Hard interaction
 Final state radiation (FSR)
 Color coherence
 Beam remnants
 Multiple Parton Interactions (MPI)
 Hadronization and decays

 Some programs in the market:
 PYTHIA, HERWIG (+JIMMY), SHERPA, JETSET, LEPTO, 

ARIADNE, ISAJET, COJETS...
 Some parton-level only:

 ALPGEN, NLO++, MADGRAPH, VECBOS, NJETS, JETRAD, 
HERACLES, COMPOS, PAPAGENO, EUROJET...
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First observations of final state color coherence effects in 
the early ’80’s (JADE, TPC/2g, TASSO, MARK II Collaborations) (“string” or
“drag” effect)

e+e− interactions:

q

q

γ q

q

g

e+e− → q q ge+e− → q q γ

Depletion of particle flow in region between q and 
q jets for qqg events relative to that of qqγ jets
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pp interactions: (observed in 3-jet and W+jet events)

Colored constituents in initial and final state 
(more complicated that e+e−)

Emission from each parton is confined to a cone 
stretching to its color partner 
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Compare pattern of soft particle flow 
around jet to that around (colorless) W
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p=

(uud)

(uud)

p=

W

Event Plane

Transverse Plane

Soft gluon radiation 
preferentially emitted
in the event plane

Initial-Final State
Constructive interference
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Compare pattern of soft particle flow 
around jet to that around (colorless) W

p=

(uud)

(uud)

p=

W

Event Plane

Transverse Plane

Soft gluon radiation 
preferentially emitted
in the event plane

Initial-Final State
Constructive interference

Far BeamNear Beam

Ratio of particle multiplicity around the Jet to that around the W      

 Count particles (towers) in annulus around W & jet
 W does not contribute to particle production and

serves to “normalize” jet data 

 Multiplicity higher around 
jet than around W

 Multiplicity around jet 
peaks in event plane

 Observations consistent
with coherence models
in Pythia (Angular Ordering
+ String Fragmentation)
and in LPHD calculation
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 Introduction
 QCD
 ee, ep, pp Processes – History of Jets
 What is a Jet?

 Jet Algorithms 
 Jet Reconstruction, Calibration, Performance
 Jet Characteristics

 Jet Energy Profile
 Quark and Gluon Jets 
 Color Coherence Effects

 Jet Production at Hadron Colliders (Tevatron & LHC)
 Underlying Event
 Event Shapes
 Dijet Azimuthal Decorrelation & Angular Distributions
 Inclusive Jet Cross Section
 Dijet Mass 

 Summary
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Run I
1992-1996
ECM = 1.8 TeV
~ 120 pb-1

(0.63 TeV ~600 nb-1)

Run IIA
2002-2005
ECM = 1.96 TeV
~ 1.5 fb-1

Run IIB 
2006-
ECM = 1.96 TeV
~ 5.5 fb-1

Main Injector
& Recycler

Tevatron

Chicago
↓

p source

Booster

p

p

p p
1.96 TeV

CDF
DØ
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Delivered 6.9 fb−1

Recorded 6.1 fb−1

Data-taking efficiency > 90%  
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Month Max # of 
Bunches

Peak 
Luminosity

Integrated 
Luminosity

1 Beam Commissioning
2 43 1.2 x 1030 100 – 200 nb-1

3 43 3.4 x 1030 ~ 2 pb-1

4 156 2.5 x 1031 ~ 13 pb-1

5 156 4.9 x 1031 ~ 25 pb-1

6 720 4.0 x 1031 ~ 21 pb-1

7 720 1.1 x1032 ~ 60 pb-1

8 720 1.1 x1032 ~ 60 pb-1

9 720 1.1 x1032 ~ 60 pb-1

10 Ions

Total Luminosity:  200 – 300 pb−1

Startup in the Fall’09
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 Total cross section ~ 100-120 mb
 The goal at startup is to re-

discover the “bread-and-butter”
physics (i.e., QCD, SM candles)
 σjet(pT>250 GeV)

 100x higher than Tevatron
 Electroweak

 10x higher than Tevatron
 Top

 100x higher than Tevatron

 QCD processes not statistics 
limited!
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 The “underlying event” consists of the “beam-beam remnants” and from 
particles arising from soft or semi-soft multiple parton interactions (MPI)

 Underlying event is not the same as a minimum bias event
 Modeling of UE is important ingredient for jet physics and lepton 

isolation, energy flow, object tagging, etc

 
Hard Scattering 

PT(hard) 

Outgoing Parton 

Outgoing Parton 

Initial-State Radiation 

Final-State Radiation 

 
Hard Scattering 

PT(hard) 

Outgoing Parton 

Outgoing Parton 

Initial-State Radiation 

Final-State Radiation 

 

Proton AntiProton 

Underlying Event Underlying Event 

 

Proton AntiProton 

Underlying Event Underlying Event 

“Hard Scattering” Component
 “Jet” 

 

“Jet” 

“Underlying Event”

 “Jet” 

Proton AntiProton

“Soft” Collision (no hard scattering) No hard scattering  
“Min-Bias” event
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 Large model dependence on LHC predictions from 
Tevatron data 

ATLAS

Pythia
Phojet



116CTEQ Summer School 2009Nikos Varelas

 Study track multiplicity and pT density in 
“transverse” jet region
 CDF approach
 Use “track jets” identified with ICone algorithm

CMS-QCD-07-003

Tracks:
pT > 900 MeV
|η| < 2

Different Pythia tunes

HERWIG, no MPI

Statistics as for 100/pb
Decrease 

systematic effects 
with ratio: 0.9/1.5



117CTEQ Summer School 2009Nikos Varelas

 Motivation:
 Test pQCD using collinear and infrared safe observables 

which are sensitive to the topology of the event  
 Can be used to distinguish between different MC models of 

QCD multi-jet production 
 Could help in searches for new physics signals
 Normalized event shape distributions are robust against jet 

energy calibration and resolution effects  

 Challenges
 Corrections to the particle level

 Jet energy/resolution effects around low pT-threshold – avoid low 
values

 Instrumental backgrounds to multijet events 
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Central Transverse Thrust:   

∑
∑

⊥

⊥
⊥

⊥⊥

•
≡

−≡

i i

i Ti
C

CC

p
p

T

T

T ,

,
,

,,

max

1

η

τ

η





 

T⊥,C =1 for 2 → 2 process
T⊥,C =1 2  for homogeneously distributed event

sys+stat errors

CMS-QCD-08-003

TeV 14=s

Systematic Errors from
JES and Resolutions ~ 2-10% 

10 pb-1



119CTEQ Summer School 2009Nikos Varelas

 Motivation:
 Confront pQCD calculations
 Input to PDF/αs determination
 Sensitivity to new physics (e.g., quark substructure, new particles 

decaying into jet final states)
 Understanding of background for other analyses
 Test LO Matrix-Element + Parton Shower generators 

 Theory challenges
 Correct parton-level pQCD predictions to particle level (e.g., 

hadronizaton, MPI)
 Understand non-perturbative effects for different jet algorithms
 Tuning of fragmentation model, understanding of PDF/Q-scale 

uncertainties
 Incorporate new physics models 
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Sqrt(s) pT>0.5 TeV pT>1 TeV
2 (DØ) 34 (700 pb-1) -

6 50 / pb-1 0.3 / pb-1

10 320 / pb-1 5 / pb-1

14 860 / pb-1 20 / pb-1

DØ: Njets for 700 pb-1 |y|<0.8

CMS: Njets / pb-1 |y|<1.3

Sqrt(s) Mjj>1 TeV Mjj >1.4 TeV Mjj >2 TeV
2 (DØ) ~200 (700 pb-1)

6 8.4 / pb-1 0.6 / pb-1

10 50 / pb-1 7.4 / pb-1

14 140 / pb-1 20 / pb-1

DØ: # evts for Mjj >1TeV, 700 pb-1

|η1|,|η2| < 2.4

For CMS: # evts/Mjj/pb-1

|η1|,|η2| < 1.3
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∆φ distribution of leading jets is 
sensitive to higher order    

radiation w/o explicitly measuring
the radiated jets

PRL 94, 221801 (2005)

Jet 1

Jet 
2

∆φ=π

2-jet event 
Jet 1

Jet 2

∆φ<π
Jet 3

3-jet event 
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∆φ distribution of leading jets is 
sensitive to higher order    

radiation w/o explicitly measuring
the radiated jets

PRL 94, 221801 (2005)

Jet 1

Jet 
2

∆φ=π

2-jet event 
Jet 1

Jet 2

∆φ<π
Jet 3

3-jet event 

Sensitivity to ISR
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 Quark Compositeness:
 For                the composite interactions can be represented by 

contact terms: 

 Eichten, Lane, Peskin, PRL 50, 811 (1983)
 Λ=∞         point-like quarks 
 Λ=finite   substructure of mass scale Λ

 Large Extra Dimensions (LED)
 In the ADD Model:

 N.Arkani-Hamed, S.Dimopoulos, G.R.Dvali, PLB 429, 263 (1998), et al.
 3+n spacelike dimensions
 n dimensions compactified to a n-torus with radius R 

 R~1 mm for n=2, R~3 nm for n=3, …
 All SM fields are confined to a 3-dim membrane (brane)
 Only gravity propagates in all dimensions (bulk)

 Mass hierarchy problem is solved
 The unification scale can be lowered to Ms~TeV 

LLLLqq qqqqgL µ
µ γγ2

2

2Λ
±=

Λ<<ŝ
q q

q q

Use high-pT jets to search for New Physics
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 In the TeV−1 Extra Dimension Model
 K.Dienes, E.Dudas, T.Gherghetta, Nucl. Phys. B 537, 47 (1999)
 A.Pomarol, M.Quirós, PLB 438, 255 (1998)
 I.Antoniadis, K.Benakli, M.Quirós, PLB 460, 176 (1999), et al.

 Matter resides on a p-brane (spacelike dim p>3):
 Fermions are confined to 3-dim world 
 SM gauge bosons can also propagate in the extra (p-3) 

dimensions
 SM cross sections are modified due to the exchange of virtual 

Kaluza-Klein excitations (                         , n=1,2,…) of the SM gauge 
bosons (e.g., gluons) through the ED

 Compact dimension R=1/MC (MC is the compactification scale)
 the 95% CL limit: MC=6.6 TeV from combined LEP data 

222 / RnMM SMn +=
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dΝ/dχ sensitive to contact interactions

Rutherford

LO QCD
with contact term

χcosθ*

⇒

From cosθ* variable to χ

 

χ = 2 y*
e

 

y* =
1
2

y1 − y2( )

 

yboost =
1
2

y1 + y2( )

2
22

ˆ
1)(
ts µα 2

2
2 ˆ

ˆ
1)(

Λ
⋅

u
ts µα

2

2

ˆ











Λ
u

dσ ∼ [ QCD   +   Interference   +   Compositeness ]
q q

q q

Λ<<ŝ

Mjj ~ Λ

dσ ~ 1/(1-cosθ*)2 angular distribution

dσ ~ (1+cosθ*)2 angular distribution
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 BSM signatures will populate the low-χ region at high 
Mjj:
 Compositeness (scale Λ)
 ADD Large Extra Dimensions (scale Ms)
 TeV−1 Extra Dimensions (scale MC)

 Theory implementation:
 Multiply NLO/LO QCD scale factor to New Physics LO:

NPSMNP MEMEME ⋅+⋅+= 2
int ξξσ ED) (TeV /1

LED) (ADD /1
(QC) /

12

4

2

-
C

s

M
M

=

=

Λ=

ξ

ξ

λξLO
QCD

NLO
QCDLO

NPLO
QCD

LO
NPNLO

QCD
NLO
NP σ

σ
σ

σ
σσσ ⋅=⋅=
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 BSM signatures will populate the low-χ region at high 
Mjj:
 Compositeness (scale Λ)
 ADD Large Extra Dimensions (scale Ms)
 TeV−1 Extra Dimensions (scale MC)

 Theory implementation:
 Multiply NLO/LO QCD scale factor to New Physics LO:

NPSMNP MEMEME ⋅+⋅+= 2
int ξξσ ED) (TeV /1

LED) (ADD /1
(QC) /

12

4

2

-
C

s

M
M

=

=

Λ=

ξ

ξ

λξLO
QCD

NLO
QCDLO

NPLO
QCD

LO
NPNLO

QCD
NLO
NP σ

σ
σ

σ
σσσ ⋅=⋅=

 Compositeness (Λ): ~2.8 – 3 TeV
 ADD LED (GRW, Ms): ~1.6 – 1.7 TeV
 TeV−1 Extra Dim (MC): ~1.6 – 1.7 TeV

Limits
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Angular distributions are 
insensitive to PDFs 

Reduced sensitivity to 
detector effects

Particle level information

Errors dominate by JEC
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Uncertainties ~ 70% on CS:
±50% accept./jet corr (smearing)
±40% calib ±10% aging  ±15% Lum

ΛC > 400 GeV “Exp and theo. 
Uncerts. taken in to account”

UA1 1986
Inclusive Jet CS

UA2 1991 
Inclusive Jet CS

Uncertainties ~ 32% on CS:
±25% model dep. (fragmentation)
±15% jet alg/analysis params
±11% calib ±5% Lum

ΛC > 825 GeV “...include sys. effects 
which could distort the CS shape”

T
T

jet

T
T

T

E
LdtE

N
ddE

dEdd
E

 vs.     1 2

∫∫∫ ∆∆
→←

∆∆ ηεη
ση

η

bin in the jets of #
Luminosity inst.sizebin  

efficiencyselection sizebin  

→
→→∆
→→∆

jet

TT

N
L

EE
ηη

ε

 √s = 0.5 – 0.6 TeV
 Cone jet clustering
 PT range: 20 – 200 GeV
 Comparison to LO QCD
 Compositeness LC > 0.8 TeV

d
dP

dx f x dx f x
d
dPT

a
a b

a A a b b B b
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σ
µ µ
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N


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( )σ α µ
π

→ ≈





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∑

2

State of art:  3-jet production @ NLO
(Next-to-Leading Order  ~O(αs

4))
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CDF 1996

Excess due to high-x gluon PDFs
and theory parameters

Not seen by DØ

NLO pQCD
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CDF 1996

Excess due to high-x gluon PDFs
and theory parameters

Not seen by DØ

NLO pQCD

xT
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steeply falling pT spectrum:
1% error in jet energy calibration 
 5—10% (10—25%)  

central (forward) x-section

pT (GeV) pT (GeV)
Benefit from:
• high luminosity in Run II
• increased Run II cm energy  high pT
• hard work on jet energy calibrationJet Energy Uncertainty ~ 1%
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CMS-SBM-07-001 & hep-ex/0807.4961

With 10 pb-1 at 14 TeV:
Can probe contact interactions beyond the Tevatron reach
(main uncertainty: JES − assume 10% at startup, asymptotically to 1-2% )
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CMS-SBM-07-001 & hep-ex/0807.4961

With 10 pb-1 at 14 TeV:
Can probe contact interactions beyond the Tevatron reach
(main uncertainty: JES − assume 10% at startup, asymptotically to 1-2% )

SISCone, R=0.7, 10 TeV

Tevatron limit 600 GeV

kT 0.6 10 TeV / 14 TeV

Loss in
pT reach
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CMS-SBM-07-001 & hep-ex/0807.4961

With 10 pb-1 at 14 TeV:
Can probe contact interactions beyond the Tevatron reach
(main uncertainty: JES − assume 10% at startup, asymptotically to 1-2% )

SISCone, R=0.7, 10 TeV

Tevatron limit 600 GeV

kT 0.6 10 TeV / 14 TeV

Loss in
pT reach

Jet Algo SISCone, R=0.7 @ 10 TeV

Hadronization Corrections for inclusive jet cross section

Jet Algo kT 0.6 @ 10 TeV
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Can probe contact interactions beyond the Tevatron reach
(main uncertainty: JES − assume 10% at startup, asymptotically to 1-2% )

SISCone, R=0.7, 10 TeV

Tevatron limit 600 GeV

kT 0.6 10 TeV / 14 TeV

Loss in
pT reach

Jet Algo SISCone, R=0.7 @ 10 TeV

Hadronization Corrections for inclusive jet cross section

Jet Algo kT 0.6 @ 10 TeV
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Systematic Uncertainties 
(dominated by Jet Energy Scale)

Unfolded Cross Sections

± 20%

± 40%

± 30%
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 Theory
 NLO pQCD (NLOJET++)
 µR = µF = <pT> = (pT1+pT2)/2
 PDF: MSTW2008
 Hadronization+Underlying

Event corrections applied to 
the theory (5-20%)

 Theory uncertainties
 PDFs: (MSTW2008) 5-15%
 Scale (<pT>/2−2<pT>): 10-15%

 Luminosity: ± 6%
 Good agreement with 

theory
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TeV 14=s

With 10 pb-1 @ 14 TeV (~30 pb-1 @ 10 TeV):
Can probe contact interactions up to 5 TeV

Tevatron Limit

Tevatron
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 Since their first observation 35 years ago, jets 
have provided the means to study the Standard 
Model and explore possibilities beyond 

 Jet algorithms have matured – latest algorithms 
need to be validated with data @ LHC

 Jet results at the Tevatron have reached high 
precision

 LHC will start producing collisions this year!
 Rich QCD program at startup and beyond
 New physics might be around the corner !
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