

Review of ATLAS experimental results

Rachid Mazini Academia Sinica Taiwan

CTEQ 2012 summer school Lima, Peru 30 July -8 August

Rachid Mazini, Academia Sinica

Disclaimer

- This is a personal snapshot of ATLAS experimental results
 - Full list available at https://twiki.cern.ch/twiki/bin/view/AtlasPublic
- There are 166 ATLAS publications on collision data up to now
 - An average of 2 papers/week in 2012
- Material included in this talk is collected from differentes sources
 - Colleagues, previous talks, official ATLAS conference slides
- I tried to be "fair" and not let Higgs searches results monopolize your attention (and mine)

Outline

- Introduction
 - ATLAS, LHC luminosity, trigger
- Perfrmance of the ATLAS detector for physics analysis
 Physics objects reconstructions: e, μ, hadronic τ decay, jets...
- QCD
- W/Z bosons
- Dibosons
- Top quark
- Higgs searches
- BSM
 - SUSY,

- Exotics: extra-dimensions, new resonances, everything else(?)

The ATLAS detector

- A general purpose detector
- Inner detector (ID)
 - Pixel
 - Silicon microstrip tracker (SCT)
 - Transition radiation tracker (TRT)
- Solenoid
 - 2T magnetic field
- Calorimeter
 - Electromagnetic (EM)-Liquid Argon (LAr)
 - Hadronic (HAD)
 - scintillating tiles in the central barrel, LAr in end caps (EC)
- Muon Spectrometer (MS)
 - Monitored drift tubes (MDT) and cathode strip chambers (CSC) used for position measurement in bending plane
 - Resistive plate chambers (RPC) and thin gap chambers (TGC) used for triggering and position measurement in non-bending plane
- Three large superconducting toroids
 - One barrel and two EC
 - Eight-fold azimuthal symmetry around calorimeter
 - 0.5T magnetic field

Detector component	η coverage		
	Measurement	Trigger	
Tracking	±2.5		
EM calorimetry	±3.2	±2.5	
Hadronic calorimetry (jets)			
barrel and end-cap	±3.2	±3.2	
forward	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$	
Muon spectrometer	±2.7	±2.4	

LHC performance

LHC is performing extremely well. Peak luminosity up to 6.8×10^{33} cm⁻¹s⁻². Expected integrated luminosity by the end of 2012: ~30 fb⁻¹.

More than 90% of delivered pp collisions are used in analyses.

High luminosity, but high-pile-up environment: >20 additional interactions per bunch crossing (9 interactions on average last year).

The new chalenge: Pile-up

ATLAS and 2012 Pile-up conditions

- Huge efforts over last months to prepare for 2012 conditions and mitigate impact of pile-up on trigger, reconstruction of physics objects (in particular E_T^{miss}, soft jets, ..), computing resources (CPU, event size)
- Pile-up robust, fast trigger and offline algorithms developed
- Reconstruction and identification of physics objects (e, γ, μ, τ, jet, E_T^{miss}) optimized to be ~independent of pile-up → similar (better in some cases!) performance as with 2011 data
- Precise modeling of in-time and out-of-time pile-up in simulation
- Flexible computing model to accommodate x2 higher trigger rates and event size as well as physics and analysis demands

Efficiency of inclusive electron trigger (E_T thresholds as low as 24GeV) as a function of "pile-up"

Performance of the ATLAS detector for physics analysis

Tracks & vertex reconstruction

Track Reconstruction

- Algorithms based on pattern recognition
 - Inside out
 - Silicon seeds extended out to TRT
 - Reconstructs most primary tracks
 - Back-tracking:
 - TRT seeded with inward extension
 - Recovers secondary tracks (conversions, hadronic interactions, V0 decays)

Primary Vertex (PV) Reconstruction

- Iteratively fit tracks consistent with interaction region
- Choose physics PV based on Σ(pT²)
 - Becomes reference PV for b-tagging
 - Physics object association is also used

PV resolution in data from 'split vertex' method: well modelled in 2011 & 2012

Impact of pile-up

Higher pileup means higher charged Primary Efficiency ATLAS Preliminary INICIAL particle multiplicity 0.9 Simulation, \simulation = 7 TeV 0. 0.8 More inner detector hits חפרטוואוומרווט 0.6 0.7 u=1: Default Higher probability of fake tracks and Minimum Bias interactions — µ=1; Robust 0.6 0.4 hence fake PVs ····· u=21: Default ---- Default VAI IA/ 0.5 — u=21: Robust ATLAS Preliminary u=41: Default Simulation 0.2 Robust Decrease in PV reconstruction 0.4F ____ μ=41; Robust ∖s=7 TeV efficiency --- Robust (Reconstructible interactions) 0.3 15 20 25 35 Robust tracks: >=9 Si hits, 0 pixel holes Fake Vertex Probability Non-primary Fraction ATLAS Preliminary ····· u=1: Default 0.9 0.07 ATLAS Preliminary Units Simulation — µ=1; Robust Simulation, \s = 7 TeV 1600 0.8E Data 2011, <µ>=15 ∖s=7 TeV ····· u=21; Default 0.06 Minimum Bias interactions Arbitrary 1 1500 0.7 u=21: Robust Data 2011, <u>=29 0.05 ····· μ=41; Default 0.6 ---- Default Data 2011, <µ>=32 = u=41: Robust 0.04 0.5 - Robust 0.4 0.03 1000 ATLAS Preliminary 0.3 ∖s=7 TeV 0.02 800 0.2 0.01 0.1 600 Ot 15 20 25 30 35 40 10 400 200 Robust track reconstruction cuts shown to 200 400 600800 1000

significantly reduce impact of pileup for moderate efficiency loss

Number of Tracks

Electrons and photons reconstruction (I)

- Use sliding window algorithm
 - Find seed with energy >2.5 GeV
- Form clusters ΔηxΔφ
 - For electrons and converted photons: 0.075x0.175 in barrel and 0.125x0.125 in end-cap
 - For unconverted photons: 0.125x0.125
- Measure cluster energy → Calibrate energy
- Match cluster to an ID track
 - Electron photon separation
- Match track to a secondary vertex
 - Converted unconverted photons

Electron and photon reconstruction (II)

Electrons and photons Identification

- Identification criteria include calorimetric cuts using the information from the different layers of the EM calorimeter, leakage in the hadronic calorimeter, track quality variables and cluster-track matching
- 3 (2) different sets of cuts with increasing background rejection
 - e: loose, medium, tight
 - γ: loose, tight

Example: Due to the fine granularity of the strips (EM), it is possible to distinguish between γ and π using strip variables. Strip granularity in η :0.003 (barrel)

Electrons identification efficicency

Identification efficiencies measured using Tag&Probe method on Z \rightarrow ee, W \rightarrow ev, J/ ψ \rightarrow ee

Dependence of the identification efficiencies on pile-up. Improved for 2012 data taking

Photons identification efficiency

Photon identification efficiency measured on MC events corrected for data-MC differences

method (tight identification and isolation)

Electrons and photons energy calibration

- The energy measured in the cluster cells is calibrated using simulation based methods and tuned with test beam results
- > $Z \rightarrow ee$ in-situ calibration is used to correct the EM scale on data
 - Used for the full pseudorapidity region $|\eta| < 4.9$
 - Cross-checked for linearity, uniformity and stability with J/ ψ and W events
 - Derive constant term to apply to MC resolution
 - Barrel: 1.2% ±0.1%(stat) ±0.5%(syst), End-cap: 1.8% ±0.4%(stat) ±0.4%(syst)

Muons in ATLAS

- Combined (CB)
 - coverage: $|\eta| < 2.5$
 - inner detector (ID) and muon spectrometer (MS) contribute to momentum accuracy
 - best momentum resolution
- Stand-alone (SA)
 - coverage: $|\eta| < 2.7$
 - high momentum resolution
 - momentum from MS
- Muon momentum resolution
 - Combined muons from Z boson decays
 - Resolution: width of Gaussian convoluted with dimuon mass resolution at generator level
 - Fit range for $m(\mu\mu)$: [75 GeV, 105 GeV]

- Segment tagged (ST)
 - coverage: $|\eta| < 2.5$
 - momentum from ID
 - needed for low pT to fill acceptance gap at $\eta \approx -1.2$
- Calorimeter tagged (CT)
 - available for $|\eta| < 2.5$ •
 - lowest purity •
 - uniform efficiency near MS acceptance gap at $\eta \approx 0$

Muon Reconstrucion efficiency and Isolation

- Tag and probe selection
 - One good muon reconstructed in ID and MS selected as tag
 - Second object identified by one of the systems taken as probe muon if invariant mass of two muons is close to
 - J/ψ mass for low p_T range
 - Z boson mass for high p_T range
 - Efficiency = fraction of probe objects identified as muons

- Muons required to be isolated to suppress background in many analyses
 - Calorimeter based isolation $\Sigma Et(\Delta R < 0.3)/pt < X$
 - Corrections applied to remove pile-up dependence
 - Track based isolation $\Sigma pt(\Delta R < 0.3)/pt < Y$

Jets reconstruction and calibration

Inputs to jet reconstruction:

- o <u>3-dimensional calorimeter topological clusters</u>:
 - Follow shower development
 - Pile-up + electronic noise suppression
 - Local hadron calibration (EM/HAD weights) derived from single pion simulations

o <u>Tracks</u>

- Independent from calorimeter
- Additional z-vertex information

Jet algorithms: anti-k_t R=0.4, 0.6

 \circ anti-k_t R=1.0, C/A R=1.2

Factorized jet energy calibration

- Pile-up, non-compensation, inactive material, shower leakage
- Residual insitu calibration

Jet response at EM scale

Pile-up substruction and uncertainty

- Offset correction to account for in-time and out-of-time pile-up
- Determined from Monte Carlo
- Uncertainty from data/MC differences in dijet and γ+jet insitu offset measurements

$$O(N_{\rm PV}, \mu, \eta_{\rm det}) = \frac{\partial p_{\rm T}}{\partial N_{\rm PV}} (\eta_{\rm det}) \left(N_{\rm PV} - N_{\rm PV}^{\rm ref} \right) + \frac{\partial p_{\rm T}}{\partial \mu} (\eta_{\rm det}) \left(\mu - \mu^{\rm ref} \right)$$

Pile-up suppression

Jet Vertex Fraction (JVF) Fraction of jets 0.6 ATLAS Simulation 0.5 **PYTHIA QCD dijets** anti-k, R=0.4 2x1033 cm-2s-1, 25ns pile-up 0.4 p_ ≥ 20 GeV, ml ≤ 2.0 Hard-scatter jets 0.3 Jets from pile-up 0.2 0.1 0 0 0.2 0.6 0.4 0.8 Jet vertex fraction (JVF)

- Reject fake jets from pile-up fluctuations using jet-vertex association
- Similar technique used to suppress pile-up on missing ET

Jets energy scale uncertainty

- Single particle response (test beam / insitu)
- Monte Carlo samples with different physics modeling and detector configurations
- Relative p_{τ} balance in dijet events

- < 2.5% for central jets, p_T>100 GeV < 7 (14)% for endcap (forward) jets
- Insitu tests of the jet energy scale:
 - γ +jets (MPF and direct balance)

ATLAS

Ldt=38 pb⁻¹√s=7 TeV

Data 2010 and Monte Carlo incl.jets

anti-k, R=0.6, EM+JES

track/calorimeter jet ratio

 10^{2}

Multi-iet balance

 10^{3}

 p_{τ}^{jet} [GeV]

Insitu jet energy scale: Z+jets

- Use large 2011 datasets to improve the precision of the jet energy scale and to adjust the jet calibration using insitu techniques
- Z+jet balance probes the jet response at low $p_{\rm T}$ (low background, and low $p_{\rm T}$ thresholds)
- Total uncertainty 1% to 2% for jet $p_T > 30 \text{ GeV}$

Reconstrucion of Tau hadronic decay

- Hadronic decays of tau: 65%
- Reconstruction seeded by anti-kt jets(R=0.4)
 - p_T > 10 GeV, |η| < 2.5
 - calibrated 3D topological clusters
 - good quality tracks with p_T > 1 GeV
 - discriminating variables
 - combined information from calorimeter and tracking
 - input to multi-variate algorithms

Topological clustering

core cone $\Delta R < 0.2$

isolation cone $0.2 < \Delta R < 0.4$

Tau identification

Decay properties of tau		Detector information used	
Collimated decay products 		Jet width in tracker and calorimeter	
Leading charged hadron	Discrimination	Leading track	
No gluon radiation	against	Isolation	
Low invariant mass	Jets	Invariant mass of tracks and clusters	
Lifetime	1	Impact parameter, secondary vertex	
EM energy fraction different from electrons		Longitudinal position of energy deposits	
EM component from π^0		LAr strip	
Less transition radiation than electrons Energy weighted calorimeter radius provides discrimination against jets 0.16 0.12 0.13 0.2 0.25 0.3 0.35 0.4 Viazini, Acad		TRT Ratio of high threshold to low threshold hits in TRT for leading track provides discrimination against electrons 0.25 0.25 0.2	

е

Tau (1P) identification performance

Tau identification efficiency measurement

- Efficiency measured in data using
 - Z -> $T_{\mu}T_{h}$ and W-> Tv events with tag and probe selection
 - require events to pass muon/MET trigger to tag a tau
 - · probe hadronically decaying tau
 - Data/MC scale factors (SF)
 consistent with 1

	$p_{\rm T} > 22 { m GeV}$			
Tau ID	Inclusive	1-prong	3-prong	
LLH Loose	5	4	10	
LLH Medium	4	5	10	
LLH Tight	5	5	11	
BDT Loose	4	4	8	
BDT Medium	4	5	8	
BDT Tight	4	4	7	

QCD at work

The issue with QCD is Calculations can be extraordinarily difficult. Many quantities need to be measured at the LHC for QCD predictions tests.

Jet structure: Fragmentation and shape

- Understand the hadronization process
- Benchmark for the simulation

Jets production cross section

 p_T interval 20 GeV-1.5 TeV. 10 orders of magnitude in cross-section

Source of systematic uncertainties: jet energy scale, luminosity, unfolding, jet matching, jet angular resolution, reconstruction efficiency, pile-up, trigger, jet ID Rachid Mazini, Academia Sinica

Parton kinematics

|y| < 4.4

High mass dijet

2010 dataset : 37 pb⁻¹

2011 dataset : 4.8 fb⁻¹

Very large dijet mass range investigated: 260 GeV-4.6 TeV: no significant deviation from QCD observed

Rachid Mazini, Academia Sinica

b-jets

Jets with a b-hadron

Verify QCD with heavy-floavou quarks

Double-differential b-jet cross-section

- Precise knowledge of cross sections necessary for discovery physics: Higgs, new physics
- b-jets identified with both secondary vertices and leptonic decays.

Direct photons

- DIS and Drell-Yan are sensitive to the quark PDFs.
- Gluon sensitivity is indirect
 - The fraction of momentum not carried by the quarks must be carried by the gluon.
- direct photon is useful way to have a direct measurement of the gluon PDFs
- It might less sensitive than the indirect measurements,
- It also has the potential to probe higher Q²
- his process depends on the (largely known) quark distributions and the (less known) gluon distribution

BUT

• There are theoretical ideas on how to resolve this, but the cross-section calculation and the PDF measurements have become intertwined.

• No longer a clean PDF measurement. Rachid Mazini, Academia S

Direct photon measurements in ATLAS

- •There is still something not entirely understood going on below 50 GeV
- It appears is a function of E_{T} . \rightarrow separate PDF effects from the calculational issues.
- Narrower binning in y primordial

W/Z bosons measurements

Motivations :

- Important backgrounds for new physics searches
- Advantage known production cross sections
- Provide tests on QCD and understanding of collision environment (PDFs)
 - Low x dominance of gluon and sea quark
 - Check evolution of QCD from low scales to high scales
 - Test pQCD predictions up to NNLO

W and Z bosons in ATLAS

Cross section measurements in ATLAS

- Extrapolation to total phase space introduces an extra uncertainty of 1.5 2.1% but allows comparisons with other experimental results
- Measurements are in good agreement with theory predictions at NNLO QCD

Fiducial Cross sections

- Comparisons in the common fiducial ($|\eta| < 2.5$ and $y_Z < 3.6$ respectively)
- Regions disentangle theory and experimental effects better
- Detailed comparisons to PDFs, without the additional extrapolation uncertainty.
- Overall, NNLO QCD comparisons in remarkable agreement.

Cross sections ratio

- Correlations due to luminosity measurement cancel at the ratio of the cross sections
- (W+ + W-)/Z ratio rather insensitive to PDFs (provided that the sea is flavor symmetric)
 - Agreement with measurement \rightarrow flavor-independent light-quark sea (athigh scale x around 0.01)
- Charge-dependent ratios (eg. W+/W-) more sensitive to u/d differences
 - Discrepancies observed between PDF sets

Rachid Mazini, Academia Sinica

Differential cross sections

• Electron and muon measurements are consistent in all three channels

 Datasets are combined taking into account the correlations for the systematics

W charge asymmetry

$$A(\eta_{\ell}) = \frac{d\sigma_{W^+}(\eta_{\ell}) - d\sigma_{W^-}(\eta_{\ell})}{d\sigma_{W^+}(\eta_{\ell}) + d\sigma_{W^-}(\eta_{\ell})}$$

Comparisons with different PDFs with the NNLO predictions. ABKM09 and HERAPDF1.5 give the best agreement.

Rachid Mazini, Academia Sinica

NNLO comparisons

 Combined measurement of differential cross-sections are compared with NNLO predictions using NNLO PDFs

- more deviations apparent than in W charge asymmetry
- good potential to bring impact on PDFs, as there are some differences among the PDFs sets

$W \rightarrow \tau \nu$ and $Z \rightarrow \tau \tau$ cross sections

W $\rightarrow \tau \nu$ with 2010 data (~35 pb⁻¹)

 $Z \rightarrow \tau \tau$ with 1.32 – 1.55 fb⁻¹ in three channels:

- μ + hadrons + 3υ ($\tau_{\mu}\tau_{h}$)
- e + hadrons + $3\upsilon (\tau_e \tau_h)$
- $e + \mu + 4 \upsilon (\tau_e \tau_\mu)$

~ 10 % systematic uncertainties

Validation of τ performance critical for searches!

τ $Z \rightarrow \tau_{\mu} \tau_{h}$ ATLAS ATLAS 1.55fb⁻¹ ATLAS $W \rightarrow \tau v_{\tau}$ Preliminary $Z \rightarrow \tau_e \tau_h$ Data 2010 (\s = 7 TeV) 1.34fb⁻¹ Stat uncertainty Sys
 Stat $Z \rightarrow \tau_{\rho} \tau_{\mu}$ ATLAS $W \rightarrow e v_e$ Sys
 Stat
 Lumi 1.55fb⁻¹ Prediction (NNLO) Theory uncertainty $Z \rightarrow ee/\mu\mu$ combined - Stat 33-36pb⁻¹ — Syst

Stat ATLAS W $\rightarrow \mu \nu_{\mu}$ - Syst ⊕ Stat ⊕ Lumi $Z \rightarrow \tau \tau$ combined Theory (NNLO) 6 10 11 12 13 15 16 8 9 14 1.34-1.55fb⁻¹ $\sigma(W \rightarrow |v_i)$ [nb] 0.9 0.7 0.8 1.1 1.2 $\sigma(Z \rightarrow \tau\tau, 66 < m_{inv} < 116 [GeV]) [nb]$ Phys. Lett. B 706 (2012) 276-294

W+jets cross section

Z+jets cross sections

- Data and predictions also agree for Z + jets cross sections and ratios
 - ALPGEN and BLACKHAT-SHERPA configured as for W + jets; SHERPA version 1.2.3

Dibosons in ATLAS

• Diboson production cross-sections are sensitive to the couplings at the triple gauge-boson vertices

Provide direct test of SM predictions

 \bullet WW $_{\gamma}$ and WWZ vertices are predicted and have been measured

ZZγ, Zγ Z, Zγγ and ZZZ vertices are forbidden

- The presence of new physics could:
 - Give anomalous Triple Gauge Couplings (aTGC)
 - Modify cross-sections and/or kinematic distributions
- •Di-Bosons are also a background to new physics searches
 - Higgs boson search

Dibosons: Wy / Zy

Dibosons: W γ / Z γ

Statistical uncertainties are dominant

• The measured cross-sections for exclusive (Njet = 0) production agree well with the NLO SM predictions both at low and high photon p_T

• At high p_T , the measured inclusive (Njet ≥ 0) production cross-sections are higher than the NLO calculations

Calculations do not include multiple quark/gluon emission

Dibosons: WW

- Good agreement with NLO SM total cross-section ~ 45.1 ± 2.8 pb
 - Measurement already dominated by systematic uncertainties when combining all three channels
 - Systematic uncertainty of ~8.4%, of which: ~6.7% on signal acceptance, and
 - ~5.1% on background estimation

Dibosons: ZZ→4leptons @ 8TeV

$$\sigma_{ZZ \to \ell^+ \ell^- \ell'^+ \ell'^-}^{\text{fid}} = 21.0^{+2.4}_{-2.2}(\text{stat.})^{+0.6}_{-0.5}(\text{syst.}) \pm 0.8(\text{lumi.}) \text{ fb}$$

$$\sigma_{ZZ}^{\text{tot}} = 9.3^{+1.1}_{-1.0}(\text{stat.})^{+0.4}_{-0.3}(\text{syst.}) \pm 0.3(\text{lumi.}) \text{ pb},$$

agreement with the NLO SM prediction: 7.52 +0.39-0.34₅pb

Dibosons: ZZ Results comparisons

Anomalous Triple Gauge Coupling (aTGC)

Example: W', Z' could be SUSY, Technicolor, Higgs...

The effective lagrangian for model independent triple gauge couplings depends on a number of parameters:

SM		coupling	parameters	channel
	1	WWy	λ _γ , Δκ _γ	WW, WY
allowed	1	WWZ	$λ_{Z}$, Δ $κ_{Z}$, Δ g_1^Z	WW, WZ
SM forbidden	1	ZZγ	h₃ ^z , h₄ ^z	Zγ
		Ζγγ	h₃¥, h₄¥	Zγ
		ΖγΖ	f40 ^Z , f60 ^Z	ZZ
	1	ZZZ	f ₄₀ Y, f ₅₀ Y	ZZ

aTGC limits from the ZZ channel

- Using 2011 ZZ cross section measurement.
- The measurement is dominated by statistical uncertainty
- No significant deviation w-r-t SM predictions is observed
- ATLAS results are more stringent than the LEP and the Tevatron ones

aTGC limits from the WW channel

- Maximum likelihood fit performed for events with $p_T lep > 120 \text{ GeV}$
- No significant deviation wrt SM predictions is observed
- ATLAS results are more restrictive than Tevatron ones

Top quark physics in ATLAS

- Precision test of theSM predictions
- Establish the different channels separately
- Cross-section $\propto \! |V_{tb}|^2$
 - Test of the unitarity of the CKM-matrix
- $R_t = (t)/t$) is sensitive to the u/d –quark PDF
- •Test of the b-quark PDF
- Search for new physics BSM
- LHC is a top quark factory

Top quark production and decays

Production mechanism

 ★ tī pair, 85% by gluon fusion, ~15% by qq̄ production
 ★ single top (electroweak)

Predictions √s= 7 TeV

 $\sigma(pp \rightarrow t\bar{t})_{\text{NNLOapprox}} = 167^{+17}_{-18} \text{ pb}$ Computed with: Aliev et. al., HATHOR, arXiv:1007:1327 (2011)

Top pair event classification according to W decays

4.9%

lepton + jets

29.6% 1 isolated lepton E_{T}^{miss} 2 b-, 2 light jets moderate (mainly W+jets) 5 for τ +e/µ+jets

45.7% no lepton no E_T ^{miss} 2 b-, 4 light jets huge (mainly QCD)

Backgrounds

Branching ratio

Final state

2 isolated leptons large E^{miss} 2 b-jets few (mainly Z+jets)

 τ channels : 13.5% for τ +jets and 6.3% for τ +e/ μ +jets

Top quark pair production with 2 leptons +jets

<u>Signature</u> : 2 isolated $e/\mu + E_T^{miss} + jets$ (1b)

<u>Trigger</u> : 1 single isolated lepton <u>Offline</u> : opposite sign leptons + E_{τ}^{miss} >30 GeV, $\Sigma E_{\tau}(e\mu)$, m_{\parallel} (Z veto) <u>Analysis Strategy</u> : counting experiment data driven estimation of Z+jets, W+jets and QCD backgrounds

Events Events ATLAS non-b-tag All channels ATLAS b-tag All channels Data Data 0.70 fb tī 1200 tīt Z/y*+jets Z/y*+jets 800 Fake leptons-Fake leptons 1000 Other EW Other EW /// Uncertainty Uncertainty 600 800 600 -----400 400 200 200 2 3 0 2 3 0 1 >4 >4 Number of jets Number of b-tagged jets

 σ_{tt} = 176 ± 5 (stat) $^{+14}_{-11}$ (syst) ± 8 (lumi) pb

overall precision ~9%, limited by systematic uncertainties

<u>Systematics</u> : in $e\mu$: Jet/ E_{T}^{miss} (~4 pb), generator (~4.5 pb), fake lepton (~3 pb)

JHEP1205 (2012) 059

Top quark pair production in full hadronic mode

Signature :

no E_{T}^{miss} + jets (2b) <u>Trigger</u> : 5 jets with p_{T} >30 GeV <u>Offline</u> : \geq 5 jets with p_{T} > 55 GeV and \geq 2 b-tagged jet

- 6^{th} jet with $p_T > 30 \text{ GeV}$
- S_{ETmiss}< 3
- Kinematical likelihood fit to find correct association of jets to reconstruct m,

<u>Signal and background modelling</u> : data driven estimation of background 35% signal and 65% multijet by the pre-btagged sample in the data

<u>Analysis Strategy</u> : Unbinned likelihood fit to m_t , $6 \le Njet \le 10$, χ^2 for m_t and m_w is calculated and satisfy $\chi^2 < 30$

overall precision ~37%, limited by systematic uncertainties

<u>Systematics</u> : JES (+20, -17 pb), b-tagging (17 pb), ISR/FSR (17 pb)

First measurement of ttbar + photon

tt + photon <u>Signature</u> : 1 e/μ + E_T^{miss} + jets (1b) + γ

<u>Offline</u> : similar to lepton+jets analysis tight photon with p₁>15 GeV

Signal and background modelling : signal, hadron fakes and QCD+ γ templates are obtained by data driven methods electron fakes, tt γ , W+jets+ γ templates are obtained from MC

<u>Analysis Strategy</u> : Fit to track isolation of γ

 $\sigma_{tt\gamma}(p_{\tau},\gamma > 8 \text{ GeV}) \times BR(LJ,DL) =$ 2.0 ± 0.5 (stat) ± 0.7 (syst) ± 0.08 (lumi) pb expected (NLO) = 2.1 ± 0.4 pb

overall precision ~43%, limited by systematic uncertainties

<u>Systematics</u> : γ-ID (0.33 pb), ISR/FSR (0.31 pb), JES (0.28 pb)

Summary of ttbar cross section measurements

- measured accuracy < theoretical one
- + σ_{tt} is also measured in alternative channels (τ), showing SM is applicable at the LHC
- additional features are explored (tt+jets)

Top quark mass measurements

t-channel cross section with 1 fb⁻¹

- Total relative uncertainty 24%
- Main Systematics:
 - B-tagging efficiency 13%
 - ISR/FSR 14%
- Significance: 7.2σ
- Cut-based analysis as a cross-check

arXiv:1205.3130 Submitted to: Physics Letters B

t-channel cross sections ratio with 5 fb⁻¹

- Flavour of the incoming light-quark defines the top-quark charge
- Measure $R_t \equiv \sigma_t(t)/\sigma_t(\bar{t})$ to constrain the light quark PDF in the momentum fraction range of 0.02 < x < 0.5
- Separate neural networks for top/antitop production to measure R_t

Result:

$$\sigma_t(t) = 53.2 \pm 10.8 \text{ pb}$$

 $\sigma_t(\bar{t}) = 29.5^{+7.4}_{-7.5} \text{ pb}$
 $R_t = 1.81^{+0.23}_{-0.22}.$

Main Systematics:

- σ: JES 20% → R_T 4%
- R_t: stat 6%, BG Norm 4%

Wt channel cross section

Summary of part I

- So many topics not covered
 - Soft QCD, heavy mesons physics, b-quark measurements, so W, Z, dibosons, jets...
 - Reminder, more data at 8TeV, many measurements are being redone in 2012. Expect improvements, higher precisions, new channels...
- Main conclusion
 - SM is always valid. EW and QCD predictions are holding through LHC measurements

