Introduction to Monte Carlos

Stefan Gieseke

Institut für Theoretische Physik
KIT

CTEQ Summer School 2013
Pittsburgh, 7–17 July 2013
Outline

▶ Part I — Basics
 ▶ Introduction
 ▶ Monte Carlo techniques

▶ Part II — Perturbative physics
 ▶ Hard scattering
 ▶ Parton showers

▶ Part III — Non-perturbative physics
 ▶ Hadronization
 ▶ Hadronic decays
 ▶ Comparison to data
Thanks to my colleagues

Frank Krauss, Leif Lönnblad, Steve Mrenna, Peter Richardson, Mike Seymour, Torbjörn Sjöstrand.
Introduction
Why Monte Carlos?

We want to understand

\[\mathcal{L}_{\text{int}} \leftrightarrow \text{Final states} \]
Can you spot the Higgs?
Why Monte Carlos?

LHC experiments require sound understanding of signals and backgrounds.

↑

Full detector simulation.

↑

Fully exclusive hadronic final state.

↑

Monte Carlo event generator with parton shower, hadronization model, decays of unstable particles.

↑

Parton level computations.
Monte Carlo Event Generators

- Complex final states in full detail (jets).
- Arbitrary observables and cuts from final states.
- Studies of new physics models.

- Rates and topologies of final states.
- Background studies.
- Detector Design.
- Detector Performance Studies (Acceptance).

- Obvious for calculation of observables on the quantum level
 \[|A|^2 \rightarrow \text{Probability}. \]
pp Event Generator
Divide and conquer

Partonic cross section from Feynman diagrams

\[d\sigma = d\sigma_{\text{hard}} \, dP(\text{partons} \rightarrow \text{hadrons}) \]

Note, that

\[\int dP(\text{partons} \rightarrow \text{hadrons}) = 1 , \]

- \(\sigma \) remains unchanged
- introduce realistic fluctuations into distributions.
Partonic cross section from Feynman diagrams

\[d\sigma = d\sigma_{\text{hard}} dP(\text{partons} \rightarrow \text{hadrons}) \]

Note, that

\[\int dP(\text{partons} \rightarrow \text{hadrons}) = 1 , \]

\[\sigma \text{ remains unchanged} \]
\[\Rightarrow \text{introduce realistic fluctuations into distributions.} \]

Simulation steps governed by different scales

\[\rightarrow \text{separation into} \ (Q_0 \approx 1 \text{GeV} > \Lambda_{\text{QCD}}) \]

\[dP(\text{partons} \rightarrow \text{hadrons}) = dP(\text{resonance decays}) \quad [\Gamma > Q_0] \]
\[\times dP(\text{parton shower}) \quad [\text{TeV} \rightarrow Q_0] \]
\[\times dP(\text{hadronisation}) \quad [\sim Q_0] \]
\[\times dP(\text{hadronic decays}) \quad [O(\text{MeV})] \]
Divide and conquer

\[dP(\text{partons } \rightarrow \text{ hadrons}) = dP(\text{resonance decays}) \quad [\Gamma > Q_0] \]
\[\times dP(\text{parton shower}) \quad [\text{TeV } \rightarrow Q_0] \]
\[\times dP(\text{hadronisation}) \quad [\sim Q_0] \]
\[\times dP(\text{hadronic decays}) \quad [O(\text{MeV})] \]

Quite complicated integration.
Divide and conquer

\[dP(\text{partons } \rightarrow \text{ hadrons}) = dP(\text{resonance decays}) \quad [\Gamma > Q_0] \]
\[\times dP(\text{parton shower}) \quad [\text{TeV } \rightarrow Q_0] \]
\[\times dP(\text{hadronisation}) \quad [\sim Q_0] \]
\[\times dP(\text{hadronic decays}) \quad [O(\text{MeV})] \]

Quite complicated integration.

Monte Carlo is the only choice.
Monte Carlo Methods
Introduction to the most important MC sampling (= integration) techniques.

1. Hit and miss.
2. Simple MC integration.
3. (Some) methods of variance reduction.
Probability density:

\[dP = f(x) \, dx \]

is probability to find value \(x \).

Example: \(f(x) = \cos(x) \).

Probability \(\sim \) Area
Probability density:

\[dP = f(x) \, dx \]

is probability to find value \(x \).

\[F(x) = \int_{x_0}^{x} f(x) \, dx \]

is called \textit{probability distribution}.

\textit{Example:} \(f(x) = \cos(x) \).

\[f(x) \]

\[x \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \]

\[0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1 \]

\textit{Probability} \(\sim \) \textit{Area}
Hit and miss method:

- throw N random points (x, y) into region.
- Count hits N_{hit}, i.e. whenever $y < f(x)$.

Then

$$I \approx V \frac{N_{\text{hit}}}{N}.$$

approaches 1 again in our example.

Every **accepted** value of x can be considered an **event** in this picture. As $f(x)$ is the 'histogram' of x, it seems obvious that the x values are distributed as $f(x)$ from this picture.
This method is used in many event generators. However, it is not sufficient as such.

- Can handle any density $f(x)$, however wild and unknown it is.
- $f(x)$ should be bounded from above.
- Sampling will be very inefficient whenever $\text{Var}(f)$ is large.

Improvements go under the name variance reduction as they improve the error of the crude MC at the same time.
Mean value theorem of integration:

\[
I = \int_{x_0}^{x_1} f(x) \, dx
\]

\[
= (x_1 - x_0) \langle f(x) \rangle
\]

\[
\approx (x_1 - x_0) \frac{1}{N} \sum_{i=1}^{N} f(x_i)
\]

(Riemann integral).

Sum doesn’t depend on ordering

\[\rightarrow\] randomize \(x_i \).

Yields a flat distribution of events \(x_i \),
but weighted with weight \(f(x_i) \) (\(\rightarrow \) unweighting).
Inverting the Integral

- Probability density \(f(x) \). Not necessarily normalized.
- Integral \(F(x) \) known,
- \(P(x < x_s) = F(x_s) \).
- Probability = ‘area’, distributed evenly,

\[
\int_{x_0}^{x} dP = r \cdot \text{area}
\]

Sample \(x \) according to \(f(x) \) with

\[
x = F^{-1}\left[F(x_0) + r(F(x_1) - F(x_0))\right].
\]
Inverting the Integral

Sample x according to $f(x)$ with

$$x = F^{-1} \left[F(x_0) + r(F(x_1) - F(x_0)) \right].$$

Optimal method, but we need to know

- The integral $F(x) = \int f(x) \, dx$,
- It’s inverse $F^{-1}(y)$.

That’s rarely the case for real problems.

But very powerful in combination with other techniques.
Importance sampling

Error on Crude MC $\sigma_{MC} = \sigma/\sqrt{N}$.

\implies Reduce error by reducing variance of integrand.
Importance sampling

Error on Crude MC $\sigma_{MC} = \sigma/\sqrt{N}$.

\implies Reduce error by reducing variance of integrand.

Idea: *Divide out the singular structure.*

$$I = \int f \, dV = \int \frac{f}{p} \, pdV \approx \left\langle \frac{f}{p} \right\rangle \pm \sqrt{\frac{\left\langle f^2/p^2 \right\rangle - \left\langle f/p \right\rangle^2}{N}}.$$

where we have chosen $\int p \, dV = 1$ for convenience.

Note: need to sample flat in $p \, dV$, so we better know $\int p \, dV$ and it’s inverse.
More interesting for **divergent integrands**, eg

\[\frac{1}{2\sqrt{x}} \]

![Graph of \(1/\sqrt{x}\)]
Importance sampling — better example

More interesting for divergent integrands, eg

\[\frac{1}{2\sqrt{x}} , \]

with some wiggles,

\[p(x) = 1 - 8x + 40x^2 - 64x^3 + 32x^4 . \]
More interesting for \textbf{divergent integrands}, eg

\[
\frac{1}{2\sqrt{x}},
\]

with some wiggles,

\[
p(x) = 1 - 8x + 40x^2 - 64x^3 + 32x^4.
\]

i.e. we want to integrate

\[
f(x) = \frac{p(x)}{2\sqrt{x}}.
\]
- Crude MC gives result in reasonable 'time'.
- Error a bit unstable.
- Event generation with maximum weight $w_{\text{max}} = 20$. (that’s arbitrary.)
- hit/miss/events with $(w > w_{\text{max}}) = 36566/963434/617$ with 1M generated events.
Importance sampling — example

Want events:
use hit+mass variant here:

- Choose new random number \(r \)
- \(w = f(x) \) in this case.
- if \(r < \frac{w}{w_{\text{max}}} \) then “hit”.
- MC efficiency = hit/N.
- Efficiency for MC events only 3.7%.
- Note the wiggly histogram.
Now importance sampling, i.e. divide out $1/2\sqrt{x}$.

\[
\int_0^1 \frac{p(x)}{2\sqrt{x}} \, dx = \int_0^1 \left(\frac{p(x)}{2\sqrt{x}} \div \frac{1}{2\sqrt{x}} \right) \, dx/2\sqrt{x}
\]

\[
= \int_0^1 \frac{p(x)}{2\sqrt{x}} \, d\sqrt{x}
\]

\[
= \int_0^1 p(x(\rho)) \, d\rho
\]

\[
= \int_0^1 1 - 8\rho^2 + 40\rho^4 - 64\rho^6 + 32\rho^8 \, d\rho
\]

so,

\[
\rho = \sqrt{x}, \quad d\rho = \frac{dx}{2\sqrt{x}}
\]

x sampled with *inverting the integral* from flat random numbers ρ, $x = \rho^2$.
Importance sampling — example

\[\int_0^1 \frac{p(x)}{2\sqrt{x}} \, dx = \int_0^1 p(x(\rho)) \, d\rho \]

with

\[\rho = \sqrt{x}, \quad d\rho = \frac{dx}{2\sqrt{x}} \]

Events generated with \(w_{\text{max}} = 1 \), as \(p(x) \leq 1 \), no guesswork needed here! Now, we get 74.6\% MC efficiency.
Importance sampling — example

\[\int_0^1 \frac{p(x)}{2\sqrt{x}} \, dx = \int_0^1 p(x(\rho)) \, d\rho \]

with

\[\rho = \sqrt{x}, \quad d\rho = \frac{dx}{2\sqrt{x}} \]

Events generated with \(w_{\text{max}} = 1 \), as \(p(x) \leq 1 \), no guesswork needed here! Now, we get 74.6% MC efficiency.

...as opposed to 3.7%.
Importance sampling — example

Crude MC vs Importance sampling.

$I = 47/63$

$|I_{MC}|$

MC error

$|I_{MC} - I|$

σ/\sqrt{N}

$100 \times$ more events needed to reach same accuracy.
Typical problem:

- $f(s)$ has multiple peaks (× wiggles from ME).
Typical problem:
- $f(s)$ has multiple peaks (× wiggles from ME).
- Usually have some idea of the peak structure.
Typical problem:

- $f(s)$ has multiple peaks (\times wiggles from ME).
- Usually have some idea of the peak structure.
- Encode this in sum of sample functions $g_i(s)$ with weights α_i, $\sum_i \alpha_i = 1$.

$$g(s) = \sum_i \alpha_i g_i(s).$$
Now rewrite

\[
\int_{s_0}^{s_1} f(s) \, ds = \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g(s) \, ds
\]

\[
= \int_{s_0}^{s_1} \frac{f(s)}{g(s)} \sum_i \alpha_i g_i(s) \, ds
\]

\[
= \sum_i \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) \, ds
\]

Now \(g_i(s) \, ds = d\rho_i \) (inverting the integral).
Now rewrite

\[\int_{s_0}^{s_1} f(s) \, ds = \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g(s) \, ds \]

\[= \int_{s_0}^{s_1} \frac{f(s)}{g(s)} \sum_i \alpha_i g_i(s) \, ds \]

\[= \sum_i \alpha_i \int_{s_0}^{s_1} \frac{f(s)}{g(s)} g_i(s) \, ds \]

Now \(g_i(s) \, ds = d\rho_i \) (inverting the integral).

Select the distribution \(g_i(s) \) you’d like to sample next event from acc to weights \(\alpha_i \).

\(\alpha_i \) can be optimized after a number of trials.
Works quite well:

Multichannel MC

Crude MC error

N

10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}

10^2 10^3 10^4 10^5 10^6 10^7
Didn’t discuss random number generators. Please make sure to use ‘good’ random numbers.

Didn’t discuss *stratified sampling* (VEGAS). Sample where variance is biggest. (not necessarily where PS is most populated).

Only discussed one–dimensional case here. N–particle PS has $3N - 4$ dimensions…

Didn’t discuss tools geared towards this, like RAMBO (generates flat N particles PS).

Generalisation straightforward, particularly $\text{MCError} \sim \frac{1}{\sqrt{N}}$, compare eg Trapezium rule $\text{Error} \sim \frac{1}{N^{2/D}}$.

Many important techniques covered here in detail! Should be good starting point.
Hard Scattering
Hard scattering
Hard scattering
Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs ($O(1)$).

- OK for very inclusive observables.

\rightarrow use Monte Carlo methods.
Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs ($O(1)$).

OK for very inclusive observables.
Starting point for further simulation.
Want exclusive final state at the LHC ($O(100)$).
Perturbation theory/Feynman diagrams give us (fairly accurate) final states for a few number of legs \(O(1)\).

- OK for very inclusive observables.
- Starting point for further simulation.
- Want exclusive final state at the LHC \(O(100)\).
- Want arbitrary cuts.
- \(\rightarrow\) use Monte Carlo methods.
Where do we get \((\text{LO}) \ |M|^2\) from?

- Most/important simple processes (SM) are ‘built in’.
- Calculate yourself (\(\leq 3\) particles in final state).
- Matrix element generators:
 - MadGraph/MadEvent.
 - Comix/AMEGIC (part of Sherpa).
 - HELAC/PHEGAS.
 - Whizard.
 - CalcHEP/CompHEP.

 generate code or event files that can be further processed.

- \(\rightarrow\) FeynRules interface to ME generators.
From Matrix element, we calculate

\[
\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \, dx_1 dx_2 d\Phi_n,
\]
From Matrix element, we calculate

\[\sigma = \int f_i(x_1, \mu^2)f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) \, dx_1 \, dx_2 \, d\Phi_n , \]
From Matrix element, we calculate

$$\sigma = \int f_i(x_1, \mu^2)f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) \, dx_1 \, dx_2 \, d\Phi_n,$$

now,

$$\frac{1}{F} \, dx_1 \, dx_2 \, d\Phi_n = J(\vec{x}) \prod_{i=1}^{3n-2} dx_i \quad \left(d\Phi_n = (2\pi)^4 \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{d^3\vec{p}}{(2\pi)^3 2E_i} \right)$$

such that

$$\sigma = \int g(\vec{x}) \, d^{3n-2}\vec{x}, \quad \left(g(\vec{x}) = J(\vec{x}) f_i f_j \sum |M|^2 \Theta(\text{cuts}) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{g(\vec{x}_i)}{p(\vec{x}_i)} = \frac{1}{N} \sum_{i=1}^{N} w_i.$$
Cross section formula

From Matrix element, we calculate

$$\sigma = \int f_i(x_1, \mu^2) f_j(x_2, \mu^2) \frac{1}{F} \sum |M|^2 \Theta(\text{cuts}) \, dx_1 dx_2 d\Phi_n,$$

now,

$$\frac{1}{F} dx_1 dx_2 d\Phi_n = J(\vec{x}) \prod_{i=1}^{3n-2} dx_i \left(d\Phi_n = (2\pi)^4 \delta^{(4)}(\ldots) \prod_{i=1}^{n} \frac{d^3 p}{(2\pi)^3 2E_i} \right)$$

such that

$$\sigma = \int g(\vec{x}) d^{3n-2} \vec{x}, \quad \left(g(\vec{x}) = J(\vec{x}) f_i f_j \sum |M|^2 \Theta(\text{cuts}) \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{g(\vec{x}_i)}{p(\vec{x}_i)} = \frac{1}{N} \sum_{i=1}^{N} w_i.$$

We generate events \vec{x}_i with weights w_i.

Stefan Gieseke · CTEQ School 2013
Mini event generator

- We generate pairs \((\bar{x}_i, w_i)\).
Mini event generator

- We generate pairs \((\tilde{x}_i, w_i)\).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
Mini event generator

- We generate pairs \((\vec{x}_i, w_i)\).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \(\vec{x}_i\) with probability

\[
P_i = \frac{w_i}{w_{\text{max}}}
\]

Generate events with same frequency as in nature!
Mini event generator

- We generate pairs \((\vec{x}_i, w_i)\).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \(\vec{x}_i\) with probability

\[
P_i = \frac{w_i}{w_{\text{max}}},
\]

where \(w_{\text{max}}\) has to be chosen sensibly.
→ reweighting, when \(\max(w_i) = \bar{w}_{\text{max}} > w_{\text{max}}\), as

\[
P_i = \frac{w_i}{\bar{w}_{\text{max}}} = \frac{w_i}{w_{\text{max}}} \cdot \frac{w_{\text{max}}}{\bar{w}_{\text{max}}},
\]

i.e. reject events with probability \((w_{\text{max}}/\bar{w}_{\text{max}})\) afterwards. (can be ignored when \#(events with \(w_i > \bar{w}_{\text{max}}\)) small.)
Mini event generator

- We generate pairs \((\vec{x}_i, w_i)\).
- Use immediately to book weighted histogram of arbitrary observable (possibly with additional cuts!)
- Keep event \(\vec{x}_i\) with probability

\[
P_i = \frac{w_i}{w_{\text{max}}}
\]

Generate events with same frequency as in nature!
Some comments:

- Use techniques from above to generate events efficiently. Goal: small variance in w_i distribution!
Some comments:

- Use techniques from above to generate events efficiently. Goal: small variance in w_i distribution!
- Clear from above: efficient generation closely tied to knowledge of $f(\vec{x}_i)$, i.e. the matrix element’s propagator structure.
 → build phase space generator already while generating ME’s automatically.
Parton Showers
Hard matrix element
Hard matrix element \rightarrow parton showers
Quarks and gluons in final state, pointlike.
Parton showers

Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim \text{few GeV to } O(\text{TeV})$.

- Measure hadronic final states, long distance effects, $Q_0 \sim 1\,\text{GeV}$.
Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim \text{few GeV to } O(\text{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\text{TeV} \rightarrow 1\text{ GeV}$.
- Measure hadronic final states, long distance effects, $Q_0 \sim 1\text{ GeV}$.
Parton showers

Quarks and gluons in final state, pointlike.

▶ Know short distance (short time) fluctuations from matrix element/Feynman diagrams: \(Q \sim \) few GeV to \(O(\text{TeV}) \).

▶ Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. \(\text{TeV} \rightarrow 1 \text{GeV} \).

▶ Measure hadronic final states, long distance effects, \(Q_0 \sim 1 \text{GeV} \).

Dominated by large logs, terms

\[
\alpha_s^n \log^{2n} \frac{Q}{Q_0} \sim 1.
\]

Generated from emissions ordered in \(Q \).
Quarks and gluons in final state, pointlike.

- Know short distance (short time) fluctuations from matrix element/Feynman diagrams: $Q \sim \text{few GeV to } O(\text{TeV})$.
- Parton shower evolution, multiple gluon emissions become resolvable at smaller scales. $\text{TeV} \rightarrow 1 \text{ GeV}$.
- Measure hadronic final states, long distance effects, $Q_0 \sim 1 \text{ GeV}$.

Dominated by large logs, terms

$$\alpha_s^n \log^{2n} \frac{Q}{Q_0} \sim 1.$$

Generated from emissions ordered in Q.

Soft and/or collinear emissions.
e^+e^- annihilation

Good starting point: \(e^+e^- \rightarrow q\bar{q}g: \)

Final state momenta in one plane (orientation usually averaged).
Write momenta in terms of

\[
x_i = \frac{2p_i \cdot q}{Q^2} \quad (i = 1, 2, 3),
\]

\[
0 \leq x_i \leq 1, x_1 + x_2 + x_3 = 2,
\]

\[
q = (Q, 0, 0, 0),
\]

\[
Q \equiv E_{cm}.
\]

Fig: momentum configuration of \(q, \bar{q} \) and \(g \) for given point \((x_1, x_2) \), \(\bar{q} \) direction fixed.
Differential cross section:

\[
\frac{d\sigma}{dx_1 dx_2} = \sigma_0 \frac{C_F \alpha_S}{2\pi} \frac{x_1 + x_2}{(1 - x_1)(1 - x_2)}
\]

Collinear singularities: \(x_1 \to 1 \) or \(x_2 \to 1 \).
Soft singularity: \(x_1, x_2 \to 1 \).
Differential cross section:

\[
\frac{d\sigma}{dx_1 dx_2} = \sigma_0 \frac{C_F \alpha_S}{2\pi} \frac{x_1 + x_2}{(1 - x_1)(1 - x_2)}
\]

Collinear singularities: \(x_1 \to 1\) or \(x_2 \to 1\).
Soft singularity: \(x_1, x_2 \to 1\).

Rewrite in terms of \(x_3\) and \(\theta = \angle(q, g)\):

\[
\frac{d\sigma}{d\cos \theta dx_3} = \sigma_0 \frac{C_F \alpha_S}{2\pi} \left[\frac{2}{\sin^2 \theta} \frac{1 + (1 - x_3)^2}{x_3} - x_3 \right]
\]

Singular as \(\theta \to 0\) and \(x_3 \to 0\).
Can separate into two jets as

\[
\frac{2 \, d \cos \theta}{\sin^2 \theta} = \frac{d \cos \theta}{1 - \cos \theta} + \frac{d \cos \theta}{1 + \cos \theta} \\
= \frac{d \cos \theta}{1 - \cos \theta} + \frac{d \cos \bar{\theta}}{1 - \cos \bar{\theta}} \\
\approx \frac{d \theta^2}{\theta^2} + \frac{d \bar{\theta}^2}{\bar{\theta}^2}
\]
Can separate into two jets as

\[
\frac{2d \cos \theta}{\sin^2 \theta} = \frac{d \cos \theta}{1 - \cos \theta} + \frac{d \cos \theta}{1 + \cos \theta}
\]

\[
= \frac{d \cos \theta}{1 - \cos \theta} + \frac{d \cos \bar{\theta}}{1 - \cos \bar{\theta}}
\]

\[
\approx \frac{d \theta^2}{\theta^2} + \frac{d \bar{\theta}^2}{\bar{\theta}^2}
\]

So, we rewrite d\(\sigma\) in collinear limit as

\[
d\sigma = \sigma_0 \sum_{\text{jets}} \frac{d \theta^2}{\theta^2} \frac{\alpha_s}{2\pi} C_F \frac{1 + (1 - z)^2}{z^2} dz
\]
Can separate into two jets as

\[
\frac{2d \cos \theta}{\sin^2 \theta} = \frac{d \cos \theta}{1 - \cos \theta} + \frac{d \cos \theta}{1 + \cos \theta} \\
= \frac{d \cos \theta}{1 - \cos \bar{\theta}} + \frac{d \cos \bar{\theta}}{1 - \cos \bar{\theta}} \\
\approx \frac{d \theta^2}{\theta^2} + \frac{d \bar{\theta}^2}{\bar{\theta}^2}
\]

So, we rewrite \(d\sigma\) in collinear limit as

\[
d\sigma = \sigma_0 \sum_{\text{jets}} \left(\frac{d\theta^2}{\theta^2} \frac{\alpha_s}{2\pi} C_F \frac{1 + (1 - z)^2}{z^2} dz \right)
\]

\[
= \sigma_0 \sum_{\text{jets}} \left(\frac{d\theta^2}{\theta^2} \frac{\alpha_s}{2\pi} P(z) dz \right)
\]

with DGLAP splitting function \(P(z)\).
Collinear limit

Universal DGLAP splitting kernels for collinear limit:

\[d\sigma = \sigma_0 \sum_{\text{jets}} \frac{d\theta^2}{\theta^2} \frac{\alpha_s}{2\pi} P(z) dz \]

\[P_{q\to qg}(z) = C_F \frac{1 + z^2}{1 - z} \]

\[P_{g\to gg}(z) = C_A \frac{(1 - z(1 - z))^2}{z(1 - z)} \]

\[P_{q\to gq}(z) = C_F \frac{1 + (1 - z)^2}{z} \]

\[P_{g\to qq}(z) = T_R (1 - 2z(1 - z)) \]
Universal DGLAP splitting kernels for collinear limit:

\[
d\sigma = \sigma_0 \sum_{\text{jets}} \frac{d\theta^2}{\theta^2} \frac{\alpha_s}{2\pi} P(z) dz
\]

Note: Other variables may equally well characterize the collinear limit:

\[
\frac{d\theta^2}{\theta^2} \sim \frac{dQ^2}{Q^2} \sim \frac{dp_{\perp}^2}{p_{\perp}^2} \sim \frac{d\tilde{q}^2}{\tilde{q}^2} \sim \frac{dt}{t}
\]

whenever \(Q^2, p_{\perp}^2, t \to 0\) means "collinear".
Universal DGLAP splitting kernels for collinear limit:

$$d\sigma = \sigma_0 \sum_{\text{jets}} \frac{d\theta^2}{\theta^2} \frac{\alpha_s}{2\pi} P(z) dz$$

Note: Other variables may equally well characterize the collinear limit:

$$\frac{d\theta^2}{\theta^2} \sim \frac{dQ^2}{Q^2} \sim \frac{dp_{\perp}^2}{p_{\perp}^2} \sim \frac{d\tilde{q}^2}{\tilde{q}^2} \sim \frac{dt}{t}$$

whenever $Q^2, p_{\perp}^2, t \to 0$ means "collinear".

- θ: HERWIG
- Q^2: PYTHIA ≤ 6.3, old SHERPA.
- p_{\perp}: PYTHIA ≥ 6.4, ARIADNE, Catani–Seymour showers in HERWIG++ and SHERPA.
- \tilde{q}: Herwig++.
Need to introduce resolution t_0, e.g. a cutoff in p_\perp. Prevent us from the singularity at $\theta \to 0$.

Emissions below t_0 are unresolvable.

Finite result due to virtual corrections:

\[\text{unresolvable + virtual emissions are included in Sudakov form factor via unitarity (see below!).} \]
Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

\[\sigma_{2+1}(t_0) = \sigma_2(t_0) \int_{t_0}^{t} \frac{dt'}{t'} \int_{z_-}^{z_+} dz \frac{\alpha_s}{2\pi} \hat{P}(z) = \sigma_2(t_0) \int_{t_0}^{t} dt \, W(t) . \]
Towards multiple emissions

Starting point: factorisation in collinear limit, single emission.

\[\sigma_{2+1}(t_0) = \sigma_2(t_0) \int_{t_0}^{t} \frac{dt'}{t'} \int_{z_+}^{z_-} dz \frac{\alpha_s}{2\pi} \hat{P}(z) = \sigma_2(t_0) \int_{t_0}^{t} dt W(t). \]

Simple example:
Multiple photon emissions, strongly ordered in \(t \).
We want

\[W_{\text{sum}} = \sum_{n=1}^{\infty} W_{2+n} = \int \left(d\Phi_1 \right|^2 + \int \left(d\Phi_2 \right|^2 + \int \left(d\Phi_3 \right|^2 + \cdots \right. \]

for any number of emissions.
Towards multiple emissions

\[W_{2+1} = \left(\int \left| \begin{array}{c} \vdots \\ \end{array} \right|^2 + \left| \begin{array}{c} \vdots \\ \end{array} \right|^2 d\Phi_1 \right) \left| \begin{array}{c} \vdots \\ \end{array} \right|^2 = \frac{2}{1!} \int_{t_0}^{t} dt \, W(t) . \]
Towards multiple emissions

\((n = 1) \)

\[
W_{2+1} = \left(\int \frac{}{}^2 + \frac{}{}^2 \, d\Phi_1 \right) = \frac{2}{1!} \int_{t_0}^{t} dt \, W(t) .
\]

\((n = 2) \)

\[
W_{2+2} = \left(\int \frac{}{}^2 + \frac{}{}^2 + \frac{}{}^2 + \frac{}{}^2 \, d\Phi_2 \right) = 2^{2!} \int_{t_0}^{t} dt' \int_{t_0}^{t'} dt'' W(t') W(t'') = \frac{2^2}{2!} \left(\int_{t_0}^{t} dt \, W(t) \right)^2 .
\]

We used

\[
\int_{t_0}^{t} dt_1 \ldots \int_{t_0}^{t_{n-1}} dt_n \, W(t_1) \ldots W(t_n) = \frac{1}{n!} \left(\int_{t_0}^{t} dt \, W(t) \right)^n .
\]
Towards multiple emissions

Easily generalized to n emissions by induction. *i.e.*

\[
W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^{t} dt \ W(t) \right)^n
\]
Towards multiple emissions

Easily generalized to n emissions \cdots by induction. i.e.

$$W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^{t} dt \ W(t) \right)^n$$

So, in total we get

$$\sigma_{>2}(t_0) = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^{t} dt \ W(t) \right)^k = \sigma_2(t_0) \left(e^{2 \int_{t_0}^{t} dt W(t)} - 1 \right)$$
Towards multiple emissions

Easily generalized to n emissions by induction. i.e.

$$W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^{t} dt \, W(t) \right)^n$$

So, in total we get

$$\sigma_{>2}(t_0) = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^{t} dt \, W(t) \right)^k = \sigma_2(t_0) \left(e^{2 \int_{t_0}^{t} dt \, W(t)} - 1 \right)$$

$$= \sigma_2(t_0) \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right)$$

Sudakov Form Factor

$$\Delta(t_0, t) = \exp \left[- \int_{t_0}^{t} dt \, W(t) \right]$$
Towards multiple emissions

Easily generalized to \(n \) emissions by induction. \(i.e. \)

\[
W_{2+n} = \frac{2^n}{n!} \left(\int_{t_0}^{t} dt W(t) \right)^n
\]

So, in total we get

\[
\sigma_{>2}(t_0) = \sigma_2(t_0) \sum_{k=1}^{\infty} \frac{2^k}{k!} \left(\int_{t_0}^{t} dt W(t) \right)^k = \sigma_2(t_0) \left(e^{2 \int_{t_0}^{t} dt W(t)} - 1 \right)
\]

\[
= \sigma_2(t_0) \left(\frac{1}{\Delta^2(t_0, t)} - 1 \right)
\]

Sudakov Form Factor in QCD

\[
\Delta(t_0, t) = \exp \left[- \int_{t_0}^{t} dt W(t) \right] = \exp \left[- \int_{t_0}^{t} \frac{dt}{t} \int_{z_-}^{z_+} \frac{\alpha_s(z, t)}{2\pi} \hat{P}(z, t) dz \right]
\]
Note that

\[\sigma_{\text{all}} = \sigma_2 + \sigma_{>2} = \sigma_2 + \sigma_2 \left(\frac{1}{\Lambda^2(t_0, t)} - 1 \right), \]

\[\Rightarrow \Delta^2(t_0, t) = \frac{\sigma_2}{\sigma_{\text{all}}}. \]

Two jet rate = \(\Delta^2 = P^2 \) (No emission in the range \(t \to t_0 \)).

Sudakov form factor = No emission probability.

Often \(\Delta(t_0, t) \equiv \Delta(t) \).

- Hard scale \(t \), typically CM energy or \(p_\perp \) of hard process.
- Resolution \(t_0 \), two partons are resolved as two entities if inv mass or relative \(p_\perp \) above \(t_0 \).
- \(P^2 \) (not \(P \)), as we have two legs that evolve independently.