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Lab 12 — Gravity and Dark Matter Max. points: 55

How do objects move under gravity? In our Solar System, the planets orbit the Sun in a predictable
way, described well by Newton’s laws where almost all the mass is concentrated at the center. But
when astronomers look at galaxies, they see something strange: stars and gas in the outer regions or-
bit much faster than expected based on the visible matter alone. This discrepancy, observed through
galaxy rotation curves, points to one of the biggest mysteries in modern cosmology - the “missing
mass~ problem. Is there a vast amount of unseen “dark matter” providing the extra gravity, or do
our theories of gravity need modification on galactic scales?

In this worksheet, you will explore this puzzle. First, you’ll analyze the familiar Keplerian rotation
of our Solar System as a baseline. Then, you’ll examine real astronomical data from a spiral galaxy,
plotting its rotation curve and calculating the total mass required to explain the observed speeds.
Finally, you’ll compare this required mass profile to the distribution of visible matter and investigate
the implications, leading to the concepts of dark matter halos and alternative theories like MOND. By
working through these steps, you’ll gain insight into the evidence for dark matter and the ongoing
quest to understand the fundamental workings of gravity and the composition of the universe.

Your preparation: Work through before coming to the lab

« Prepare for the lab by thoroughly reading and understanding the introductory text and the
analysis procedures on this worksheet.

« Collect all your questions and ask your instructor at the beginning of the lab.

« Work through and review the following topics in your physics textbook (e.g., Halliday, Resnick,
and Walker [1]):

— Newton’s Law of Universal Gravitation: Understand the force between two masses

(F = GMm/R?).

- Circular Motion and Centripetal Force: Understand the relationship between veloc-
ity, radius, and the force required for circular motion (F,. = mu? /R).

— Orbital Mechanics: How gravitational force provides the centripetal force for orbits.

— The Doppler Effect (for light): Understand how the observed frequency (or wave-
length) of light changes when the source is moving relative to the observer (redshift and
blueshift). How this relates to velocity.

— Astronomical Units: Be familiar with units like Astronomical Units (AU), parsecs (pc),
kiloparsecs (kpc), megaparsecs (Mpc), light-years, solar masses (//), and angular mea-
surements (arcminutes, arcseconds). Understand basic conversions or how they relate
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(e.g., using small angle approximation d = D@ for the physical size d of an object at a
distance D given its angular size 6).

— Newton’s Shell Theorem (conceptual): Understand the two main points regarding
gravitational forces from spherical shells (no net force inside, acts as point mass outside).

Pre-lab: Upload to Canvas before coming to the lab

A reminder: Upload your answers as a text document (exported as PDF) to Canvas before the lab
begins (Canvas uploads are no longer possible 60 minutes before the lab starts!).

Pre-lab 1

1. (1point) Explain the Doppler effect for light. How can astronomers use it to determine if a
part of a galaxy is moving towards us or away from us, and how fast?

2. (1 point) Consider an object of mass m orbiting a much larger central mass M in a circular path
of radius R. By equating the gravitational force with the centripetal force, derive an expression
for the orbital velocity v as a function of R. How does v depend on R?

3. (1 point) What is a galaxy rotation curve? Based on this worksheet and fig. 4, what is the main
discrepancy between the observed rotation curves of spiral galaxies and the predictions based
on their visible matter?

4. (1point) Briefly describe the two main proposed explanations mentioned in the text for this
discrepancy (Dark Matter and Modified Gravity).

5. (1 point) An object is observed at an angular radius of 1 arcminute from the center of a galaxy:.
If the galaxy is at a distance D = 10 Mpc from Earth, calculate the object’s physical distance 12
from the galaxy’s center in kiloparsecs (kpc). Use the small angle approximation (tan § ~ 6 for
small # in radians). Remember that 1 degree = 60 arcminutes, 7 radians = 180 degrees, 1 Mpc
= 1000 kpc.

Analysis and Report: submission by end of class

A reminder: All calculations and plots must be documented. The final report must be uploaded to
Canvas by the end of the class exported as PDF with plots and tables embedded as images.

Analysis 1 Keplerian rotation curve

Introduction: We first examine a familiar system where gravity dictates orbital motion: our own Solar
System. By analyzing the relationship between orbital speed and distance from the central mass (the
Sun), we can establish a baseline expectation based on Newton’s Law of Universal Gravitation when
most of the mass is concentrated at the center. This is often called Keplerian rotation.

5 points

18 points
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a) (8 points) Solar system rotation curve: Using a reliable source (like Wikipedia or a NASA
database), find the average orbital speed (in km/s) and the semi-major axis (in AU) for the 8
planets in our solar system. Create a table of these values. Using Excel or similar software,
create a plot of orbital speed (v, y-axis) versus semi-major axis (R, x-axis). Pay attention to
the correct labeling of axes and data points.

b) (6 points) Theoretical prediction: Assume planets (mass m) orbit the Sun (mass M) due to
gravity providing the centripetal force:
GMom — mw?
R R

(1)

where G = 6.674 x 107" N - m? /kg®. Solve eq. (1) for v as a function of R. Look up the mass
of the Sun (M,). Calculate the predicted orbital speed v(R) for several values of R spanning
the range of the planets’ orbits (or specifically at each planet’s R). Add this theoretical curve
to your plot from part (a). Make sure your units are consistent (km/s for v, AU for R - you’ll
need conversion factors: 1 AU ~ 1.496 x 108 km).

c) (4 points) Discussion: Discuss the agreement or disagreement between the theoretical curve
and the planet data points. How well does the v o 1/+/R prediction fit the solar system? What
are potential reasons for any minor deviations (e.g., non-circular orbits, gravitational influence
of other planets)? Do you expect this same 1/+/R relationship to hold for stars orbiting within
a galaxy? Why or why not? (Consider how mass is distributed).

Analysis 2 Galaxy rotation curve and enclosed mass 20 points

Figure 1: Messier 77 galaxy, also known as NGC 1068 [2].

"https://science.nasa.gov /solar-system/planets/, https://nssdc.gsfc.nasa.gov/planetary /factsheet/
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Measuring a galaxy’s rotation

".! Rest

Shorter «—— Wavelength —» Longer

As a galaxy rotates, the material moving away from us sho redshift in the wavelength of any emitted
light (red arrow). Material moving toward us shows a blueshift (blue arrow). By measuring these shifts
across a galaxy, astronomers can determine its rotation. WY RDEN KELLY

Figure 2: Using Doppler effect to measure a galaxy’s rotation speed, from ref. [3].

Introduction: Most galaxies in our universe rotate, often exhibiting spiral structures like Messier 77
shown in fig. 1. Understanding how these galaxies form and evolve involves concepts like the gravi-
tational collapse of interstellar gas and dust, combined with the conservation of angular momentum.
The intricate spiral patterns themselves have been studied since the 1960s, with early explanations
involving “density wave theory” [4]. Today, large-scale computer simulations based on Newton’s
laws of mechanics are crucial tools for modeling galactic evolution.

However, directly observing a galaxy complete a rotation is impossible due to the immense timescales
involved — typically hundreds of millions of years. To study galactic rotation speeds, astronomers
rely on the Doppler effect (fig. 2). Similar to how the pitch of an ambulance siren changes as it passes,
the frequency (color) of light shifts based on the relative motion between the source and observer.
Light from parts of a galaxy moving towards us is shifted to higher frequencies (blueshifted), while
light from parts moving away is shifted to lower frequencies (redshifted). Measuring this shift allows
us to determine the orbital speed (v) of stars or gas clouds at different distances (R) from the galactic
center.

To accurately measure the Doppler shift, we need a light source with a precisely known original fre-
quency. Ordinary starlight varies in color. Fortunately, neutral hydrogen gas, abundant in galaxies,
emits radio waves at a very specific frequency of 1.42 GHz (corresponding to a wavelength of 21 cm)
——a well-understood quantum mechanical effect. This "21cm line” emission serves as a reliable stan-
dard. Furthermore, these radio waves have the advantage of penetrating the interstellar dust that
often obscures visible light from distant parts of galaxies.

By measuring the Doppler shift of the 21cm line across a galaxy, astronomers can map out the orbital
speed v as a function of radius R, creating what is known as a rotation curve, v(R). Physicists
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compare these observed rotation curves to theoretical predictions based on Newton’s law of gravity,
considering the mass distribution inferred from the visible, luminous matter (stars and gas).

In this analysis, you will use observational data for a spiral galaxy (NGC 3198) to plot its rotation
curve. You will then apply Newton’s law of gravitation, specifically considering the total mass en-
closed within a given radius (Mencosea( R)), to calculate the mass profile required to explain the ob-
served speeds. This calculation is fundamental to understanding the discrepancy between the mass
we see and the mass required by gravity, a puzzle that points towards the existence of dark matter
or the need for modified theories of gravity.

Table 2. Rotation Curve of NGC 3198

R Ve é i R Vo ¢ i
) (kms™1!) ©) ) ) (kms—1) ) )
0.25 558 216.0 715 4.5 15342 216.4 70.6
0.50 9248 216.0 71.5 5.0 15442 216.2 70.5
0.75 1106 216.0 71.5 5.5 1532 216.1 70.7
1.00 12345 216.0 71.5 6.0 1502 215.9 70.9
1.25 1344 216.0 715 6.5 14942 215.7 1.5
1.50 14244 216.0 71.5 7.0 14832 215.5 72.1
1.75 14543 216.0 71.5 7.5 14622 215.2 72.7
2.00 14743 216.0 715 - 8.0 1472 215.0 73.4
2.25 14843 216.0 71.5 8.5, 1482 215.0 74.0
2.50 15242 216.0 71.5 9.0 1482 215.0 74.6
2.75 155+2 216.0 71.5 9.5 14942 215.0 75.2
3.0 1562 216.0 71.0 10.0 1502 215.0 75.9
3.5 157+2 216.3 70.8 10.5 1503 215.0 76.4
4.0 153:+2 216.6 70.7 11.0 14943 215.0 77.0

Figure 3: Rotation curve data for galaxy NGC3198 from ref. [5]. R is the angular radius in arcminutes

a)

b)

(1/60 of a degree), V- the rotation speed. The observation distance is 9.4 Mpc.

(6 points) Plotting galaxy data: The data table in Figure 3 shows rotation curve measure-
ments for the spiral galaxy NGC 3198, obtained by studying the Doppler shift of the 21cm
hydrogen line. The table provides the observed rotation speed V¢ (in km/s) as a function of
the angular radius R (in arcminutes) from the galaxy’s center.

First, convert the angular radius R (arcmin) for each data point into a physical radius in kilo-
parsecs (kpc). Use the given observation distance to the galaxy, D = 9.4 Mpc, and the small
angle approximation Rypysical = D X Rangular (remembering to convert Ry,gu1.r from arcminutes
to radians first).

Create a table in your report listing the original R (arcmin), the calculated R (kpc), and the
corresponding V¢ (km/s) for all data points provided in Figure 3. Then, create a plot of the
rotation speed V¢ (y-axis) versus the physical radius R (kpc, x-axis). Ensure your plot axes are
clearly labeled with units, and the data points are clearly shown.

(3 points) Comparison: How does the shape of this galaxy rotation curve differ from the solar
system (Keplerian) rotation curve you plotted earlier, especially at large radii? Give possible
explanations.
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c)

d)

e)

(6 points) Calculating enclosed mass: Unlike our Solar System where almost all the mass
(M) is concentrated at the center, galaxies have their mass (stars, gas, dust, and potentially
dark matter) distributed throughout their volume. This complicates the gravitational analy-
sis. However, if we approximate the mass distribution as spherically symmetric, we can use
Newton’s shell theorems to understand its gravitational effects:

» Theorem 1: A spherically symmetric body affects external objects gravitationally as
though all of its mass were concentrated at a point at its center.

« Theorem 2: If the body is a spherically symmetric shell (i.e., a hollow ball), it exerts no
net gravitational force on any object inside it.

Let’s apply these theorems to an object (like a star or gas cloud) orbiting at radius R within
the galaxy’s assumed spherically symmetric mass distribution. We can conceptually divide the
galaxy’s mass into two parts:

(i) Mass outside radius R: Imagine all the mass located at radii greater than R. This mass
can be thought of as a series of nested spherical shells, each with a radius larger than R.
According to Theorem 2, each of these shells exerts zero net gravitational force on our
object located inside them (at radius R). Therefore, the combined gravitational effect of
all mass outside radius R on the object is zero.

(ii) Mass inside radius R: Now consider all the mass located at radii less than or equal to R.
This collection of mass itself forms a spherically symmetric body. Our object at radius
R is effectively external to this inner mass distribution. According to Theorem 1, this
inner body exerts a gravitational force on the object as if its total mass, which we call
the enclosed mass Mepcosed(RR), Wwere concentrated at the very center of the galaxy.

Combining these two points, the total gravitational force experienced by the object at radius
R depends only on the total mass enclosed within its orbit, Meycosed(R), acting as if it were a
point mass at the center. The mass outside radius R does not affect its orbit. This allows us to
adapt the equation used for Keplerian orbits, where the gravitational force due to the enclosed
mass provides the necessary centripetal force for circular motion:

GMenclosed(R)m mu? U(R)2R
R2 - R - Menclosed<R) = aq

()

Using your data points (R in kpc, Vi in km/s) from part (a), calculate the enclosed mass
Menclosed(R) for each point using eq. (2). Be very careful with units! You will need to con-
vert R from kpc to m and V- from km/s to m/s before using G in standard SI units (6.674 x
10~''N - m?/kg?). It is convenient to express the final mass in solar masses (M = 1.989 x
103°kg). Add columns for Mpceseq (in M) to your table from part (a).

(4 points) Plotting mass profile: Create a plot of the enclosed mass Mepcjosed (in M), y-axis)
versus radius R (in kpc, x-axis).

(1 point) Mass trend analysis: Look at your plot for NGC 3198 at large radii (R > 15kpc).
The velocity v(R) appeared to be roughly constant. What does your plot of Mepejosed(R) show
in this region? Does the enclosed mass appear to level off (become constant) or continue to
increase with radius? Based on eq. (2), what functional form must Mposeq(R) have for v(R)
to be approximately constant? Does your calculated mass profile support this?

6
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Analysis 3 Interpreting the Mass Profile: Dark Matter and Alternatives

Introduction: In the previous analysis, you calculated the total enclosed mass Mepciosed( R) required by
Newtonian gravity to explain the observed rotation curve v(R) of galaxy NGC 3198. You likely found
that to maintain the nearly constant velocities seen at large radii, the enclosed mass must continue
to increase substantially, roughly linearly with radius (Meycosed(R) o< R). This result stands in stark
contrast to the distribution of visible matter (stars and gas), which is mostly concentrated towards
the galactic center, implying its contribution to the enclosed mass should level off at large distances.
This discrepancy is the core of the missing mass” problem, famously illustrated in fig. 4. In this
section, you will delve into the interpretation of this required mass profile, comparing it explicitly
to the visible matter distribution and exploring the two main proposed solutions: the existence of a
vast dark matter halo and the possibility of modifying Newtonian dynamics (MOND).

Observations
.. from starlight

Velocity
(km s-1)

. Expected from
the visible disk

10,000 20,000 30,000 40,000

. Distance (light years)

Figure 4: Rotation curve of the spiral galaxy Messier 33 (Triangulum). The "Expected from visible
disk” curve falls far below the observed points at large radii, indicating missing mass. The
"Dark matter halo” curve shows how adding a halo component can explain the observations

[6].

a) (2points) Visible vs. Total mass: Compare the trend of your calculated Meycosea(R) plot
with the distribution of visible matter (stars and gas) in a typical spiral galaxy. Visible matter
is highly concentrated towards the center, meaning its contribution to Meycosed () should level
off at large radii (similar to how almost all the Solar System’s mass is in the Sun). Does your
calculated total Mepcosed(R) level off? Discuss the discrepancy illustrated in fig. 4.

b) (4 points) Dark Matter Halo Concept: The discrepancy suggests the existence of "dark mat-
ter” — matter that does not emit or interact significantly with light but does exert gravitational
force. This dark matter is thought to form a large, roughly spherical “halo” extending far be-
yond the visible disk of the galaxy. A simple model for the density profile of such a halo is the
pseudo-isothermal sphere:

p(r) = % 3)

where py is the central density and R, is the core radius. At large radii (r > R.), this den-
sity falls off as p(r) o 1/r?. Show that if the density falls off as 1/r?, the enclosed mass

Mendosed(R) = 47 fOR dr r?p(r) grows approximately linearly with R (Myaosea(R) o< R) at

7
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large R. Does this linear growth match the trend required for a flat rotation curve (v =~
constant) that you deduced in the previous analysis section?

¢) (3points) Alternative: MOND: An alternative explanation, known as Modified Newtonian

Dynamics (MOND), proposes that Newton’s laws of gravity or motion might need adjust-

ment at the very low accelerations experienced by stars in the outer parts of galaxies (a <
1071%m/s?).

Instead of adding unseen matter, MOND modifies the relationship between force and accel-
eration (e.g., F' = mu(a/ag)a, where p(z) ~ x for small x and u(x) ~ 1 for large ) or the
gravitational force law itself. While less widely accepted than dark matter, MOND can also
reproduce flat rotation curves without invoking dark matter. Based on the descriptions pro-
vided, articulate in your own words the fundamental conceptual difference between the dark
matter hypothesis and the MOND hypothesis.

d) (3points) MOND’s Force Law and Flat Rotation: Let’s explore qualitatively how MOND’s

modification to Newton’s second law, F' = myu(a/ag)a, might explain flat rotation curves
without dark matter. Consider the "deep MOND regime” relevant to the outer parts of galaxies
where the acceleration a is much smaller than the characteristic acceleration ag (@ < ag). In
this regime, the function p(z) &~ x (where © = a/ay), so the force law becomes approximately
F ~m(a/ag)a = ma?/ay.

Assume a star of mass m is orbiting the galaxy’s center at a large radius R with velocity v. The
gravitational force is provided only by the enclosed visible mass M,;;, which we can approxi-
mate as being constant at these large radii (F, ~ G M,;sm/R?). The centripetal acceleration is

a=v?/R.

By equating the gravitational force F}, with the modified inertial force F' ~ ma?/aq, substitute
a = v*/ R and show that this leads to a relationship where v* is proportional to M,;;. Explain
why this result implies that the orbital velocity v becomes approximately constant at large
radii (where M, is roughly constant), thus potentially explaining the observed flat rotation
curves without invoking dark matter.

References

D. Halliday, R. Resnick, and J. Walker. Fundamentals of Physics. Fundamentals of Physics. John
Wiley & Sons.

NASA, ESA & A. van der Hoeven. URL: http://www.spacetelescope.org/news/heic1305/.
URL: https://www.astronomy.com /science /how-do-you-measure-the-rotational-speed-of-
a-galaxy-taking-into-consideration-the-motion-of-our-galaxy-solar-system-planet-etc/.

C. C. Lin and Frank H. Shu. “On the Spiral Structure of Disk Galaxies” In: Astrophysical Jour-
nal 140 (Aug. 1964), p. 646. por: 10.1086/147955.

Kornelis Begeman. “HI rotation curves of spiral galaxies”. PhD thesis. University of Gronin-
gen, 1987.

Mario De Leo. URL: https://commons.wikimedia.org/w/index.php?curid=74398525.


http://www.spacetelescope.org/news/heic1305/
https://www.astronomy.com/science/how-do-you-measure-the-rotational-speed-of-a-galaxy-taking-into-consideration-the-motion-of-our-galaxy-solar-system-planet-etc/
https://www.astronomy.com/science/how-do-you-measure-the-rotational-speed-of-a-galaxy-taking-into-consideration-the-motion-of-our-galaxy-solar-system-planet-etc/
https://doi.org/10.1086/147955
https://commons.wikimedia.org/w/index.php?curid=74398525

	Your preparation: Work through before coming to the lab
	Pre-lab: Upload to Canvas before coming to the lab
	Analysis and Report: submission by end of class

