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Abstract

We show how quark helicity symmetry can be spontaneously broken in SU(N) gauge theory when

that theory is quantized in the light-cone representation. The symmetry breaking is implemented

by induced operators. These operators result from the fact that the vacuum is not trivial, but

involves a condensate of fermionic zero modes. We show that the light-cone eigenvalue problem

can be equivalently studied in a trivial vacuum with the induced interactions, which do not conserve

quark helicity, included in P−. These interactions generate a splitting between pi and rho meson

masses. As an example, we calculate the meson spectrum in a dimensionally reduced large-N gauge

theory. The induced interactions may also provide a linear dependence of the pion mass squared

on the quark bare mass which is not manifest in their absence.
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I. INTRODUCTION

One of the pillars of hadronic physics is the spontaneous breaking of chiral symmetry.

Phenomenologically, one of the most important aspects of that symmetry breaking has been

the existence of the chiral condensate, 〈ψ̄ψ〉. The success of the QCD sum rules [1], for

example, suggests that chiral and other condensates play an important role in extracting

hadronic physics from QCD. On the other hand, it may also be that an effective theory

could be developed in which the effects of the condensates appear in another guise. The ’t

Hooft model of 2 dimensional QCD [2], for example, has chiral and other condensates [3],

yet the spectrum can be obtained from a light-cone hamiltonian in a trivial vacuum. When

quantizing on the light-cone, the study of chiral symmetry is difficult. In that representation,

chiral symmetry is a dynamical symmetry in that the generator includes the dynamical

light-cone hamiltonian operator P−. Chiral symmetry cannot be checked until the problem

is solved. Furthermore, in practical calculations where regulators must be used, it is not

easy to ensure that the regulators do not break chiral symmetry explicitly.

In the early 1970’s some attempts were made to study the problem in terms of charges and

pseudocharges that are kinematical in the light-cone representation. This early literature

has been reviewed by Mustaki [4]. The light-cone symmetry studied in that work, whose

conserved charge Q̃5 is quark helicity, can remain a symmetry even when chiral symmetry

is explicitly broken by constituent masses. If the quark helicity symmetry is spontaneously

broken, the usual pattern of light pseudoscalars could emerge. Moreover, Q̃5 is not conserved

even in chirally symmetry theories. Because of the differences between the operators that

are easy to study in the light-cone representation and the operators that are connected with

chiral symmetry, the whole subject of chiral symmetry breaking in the light-cone represen-

tation has generally involved testing for simple consequences of the spontaneously broken

symmetry rather than testing the symmetry itself. One example is to look for the existence

of a chiral condensate. If the traditional light-cone quantization procedures are used, there

is no chiral condensate. One consequence of the spontaneously broken symmetry, which we

shall study in the present paper, is mass splitting between π and ρ mesons. That issue can

be formulated in terms of the kinematical light-cone symmetries. We can therefore study

this question separately from the more complicated question of chiral symmetry.

One case, where chiral symmetry is broken and the connection between the equal-time
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and the light-cone representations can be explicitly given, is the Schwinger model. In that

case, there exists a complete operator solution which can be evaluated either at x0 = 0 or

at x+ = 0 [5]. Since there is one operator solution, if it has a condensate when quantized at

equal time there must also be one when quantized on the light cone. In fact there is a chiral

condensate in both representations. The way it occurs in the light-cone representation is

that the bare light-cone vacuum is dressed by operators that occur in integration constants

in the solution of constraint equations. From the operator solution we can learn that these

integration constants are not zero and that the vacuum state formed through their inclusion

is the same state as the vacuum found if the theory is quantized at equal time. The existence

of the condensate ”induces” an operator into the dynamics [6]. The induced operator is not

a new operator — it is a part of the P− found if the theory is quantized at equal time —

but it is missed if the traditional form of light-cone quantization is employed. An important

feature of the system is that, once the new operator is included, the vacuum can be taken

to be the traditional trivial light-cone vacuum without loss of generality.

In this paper, we develop an realization of the idea that QCD contains vacuum structures

similar to those that can be explicitly demonstrated in the Schwinger model. As in the case

of the Schwinger model, this structure involves a mechanism whereby fermionic light-cone

zero modes induce interactions in an effectively trivial vacuum. We shall describe these

operators and shall provide example nonperturbative spectrum calculations. The vacuum

we use here, and the induced operators which exist due to it, are probably not complete

— for instance, there is not yet a gluon condensate. The glue in the vacuum may occur

through a mechanism similar to the one which we show here for fermions, but we do not yet

know the details.

The results of this paper are as follows. In the next section we briefly review the tools we

will need: quark helicity symmetry; the vacuum of the Schwinger model. In section III we

derive the form of the induced interactions that spontaneously break quark helicity symmetry

in SU(N) gauge theory. We then obtain some exact solutions of simplified models containing

only these induced interactions in section IV. Adding gauge interactions in a dimensionally

reduced model in section V, we then perform DLCQ calculations of the meson spectrum in

this non-trivial example to illustrate the pi-rho splitting that follows from non-conservation

of quark helicity. We give some conclusions in section VI.
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II. HELICITY SYMMETRY AND THE VACUUM

A. Quark helicity symmetry

Unless otherwise stated, our metric is x± = x0 ± x3, where x+ is the light-front time

variable. We decompose a spinor ψ = ψ++ψ− into the projections ψ± = 1
2
γ∓γ±ψ. Typically,

the ψ− component satisfies a constraint equation whose source term is ψ+. At this stage there

arise two possibilities for ‘chiral’ rotations of the fermi field. The usual chiral transformation

is defined by

ψ → e−iγ5θψ , (1)

while a light-cone chiral transformation can be defined by

ψ+ → e−iγ5θψ+ , (2)

with the transformation of ψ− determined by its constraint equation. The transformation

(2) may be a symmetry even though (1) is not. A well-known example of this is a free

massive fermion, with Lagrangian density

L = ψ̄ (iγµ∂
µ − µ)ψ . (3)

The constraint equation in this case is solved formally by

ψ− =
µ+ iγ⊥ · ∂⊥

i∂−
γ0ψ+ , (4)

where ∂⊥ = (∂1, ∂2). Eq. (4) is inconsistent with (1), though not (2). We consider the

boundary condition for the anti-derivative 1/∂− in the next subsection; it will be the source

of vacuum structure that leads to spontaneous breaking of symmetry under (2).

The charges that generate (1)(2) are also different, in particular they’re defined with

respect to different hypersurfaces. In the absence of derivative interactions, the chiral charge

is

Q5 =

∫

ψ̄γ0γ5ψ d2x⊥ dx3 . (5)

while the light-cone chiral charge is

Q̃5 =

∫

ψ̄γ+γ5ψ d2x⊥ dx− . (6)

The latter measures (twice) the total fermion and anti-fermion helicity or, equivalently, the

spin projection along x3. In a coordinate system moving at light speed, even a massive
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particle has maximal helicity. To avoid confusion later and maintain the distinction from

chiral symmetry (1), we shall hereafter refer to (2) as quark helicity symmetry. A key

question is whether the quark helicity is conserved [7] since, if it is, it seems impossible to

split the pion and helicity zero component of the rho in the spectrum of SU(N) gauge theory

[8, 9, 10]. We will show in section III that spontaneous breaking of symmetry (2) can occur

via x− zero modes. We note that another approach to the problem, taken in ref.[11], was

to derive a gap equation (assuming a trivial vacuum) and then gradually remove explicit

quark helicity symmetry breaking. The model studied there was not exactly a gauge theory

– it was closer to a Yukawa theory – but it also suggested that fermion helicity may be

spontaneously non-conserved.

B. The Schwinger Model

The one case for which, to date, zero mode induced operators of the kind that we will

use have been carefully derived in detail is the Schwinger model (QED in 1+1 dimensions).

Here, we shall simply review the results, referring to the literature [5, 6, 12] for details and

derivations. In the massive case, the abelian action is

S =

∫

d2x

[

−1

4
TrFαβF

αβ + iψ̄γα
(2)Dαψ − µψ̄ψ

]

, (7)

α, β ∈ {+,−}, Fαβ is the field strength, γα
(2) the two-dimensional representation of the

gamma matrices, and Dα = ∂α + ieAα. In light-cone gauge ∂−A− = 0, the constraint

relation is still the same as that of a free fermion

∂−ψ− = −iµψ+, (8)

where µ is the bare mass. In general this must be solved as

ψ− = ψ0
−(x+) − i

1

2
µ

∫

ψ+dx
−. (9)

Here,
∫

is the antiderivative which just replaces eikx with 1
ik

eikx in the Fourier expansion of

the field. Note that the x−-zero mode ψ0
−(x+) is a field that is independent of ψ+. ψ0

−(x+)

has the bosonized form

ψ0
− = Z−(µ)eΛ

(−)
− (µ)σ−eΛ

(+)
− (µ), (10)
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where Λ− is a bosonic field depending on x+, σ− is a (space-time independent) spurion and

Z− is a wave function renormalization constant. (+) and (-) refer to positive and negative

frequency parts. We write the field ψ+ similarly in bosonized form as

ψ+ = Z+eΛ
(−)
+ σ+eΛ

(+)
+ . (11)

The physical vacuum is given by

|Ω(θ)〉 ≡
∞
∑

M=−∞
eiMθ|Ω(M)〉 ; |Ω(M)〉 = (σ∗

+σ−)M |0〉, (12)

where σ−1 ≡ σ∗. The existence of these vacua, and their form, can be determined from the

fact that we have residual gauge transformations and that σ∗
+σ− is the generator of those

residual gauge transformations. The mass mass operator then takes the form

µ

∫

ψ̄ψ dx− = µZ−Z+:eΛ−:

∫ ∞

−∞

(

σ∗
−σ+(eΛ

(−)
+ eΛ

(+)
+ − 1) + C.C.

)

dx− (13)

+
1

2
µ2

∫ ∞

−∞

(

ψ∗
+(0, x−)

[

−
∫

i
1

2
ψ+

]

+ C.C.

)

dx−,

where C.C. is complex conjugate. The field Λ− is unphysical, so in the physical subspace

we can replace :eΛ−: by 1. The term linear in µ is our first example of an induced operator.

Fortunately, we do not have to include the full complications of the physical vacuum in prac-

tical calculations. The reason is that the combination of spurions σ∗
−σ+ acts as a c-number

in the physical subspace, since |Ω(θ)〉 is an eigenstate of it. Therefore, each component of

the vacuum transforms the same under all the dynamical operators. We may therefore just

take the bare (trivial) light-cone vacuum |0〉 as the representative case. If we kept the full

vacuum we would just have an infinite number of copies of the exact same algebra. With

that understanding, the full dynamics of the system, including the complex vacuum, is ob-

tained by using the bare vacuum but including the induced operator with the appropriate

c-number replacing spurions.

Before moving on the the problem of determining the wave function renormalization

constants, we should discuss the meaning of :eΛ+: that we used in Eqn.’s (13). To discuss

the linear growth of the mass of the Schwinger particle with the bare fermion mass due

to chiral symmetry breaking (at least in the usual language) we need two versions of the

operator ψ̄ψ. The first, ψ̄ψ1, is given by ψ̄ψ1 = Z−Z+σ
∗
−σ+eΛ

(−)
+ eΛ

(+)
+ + C.C. It is ψ̄ψ1 that

has the chiral condensate. For instance, at µ = 0

〈Ω(θ)|ψ̄ψ1|Ω(θ)〉 = − e

2π3/2
eγ cos θ. (14)

6



But the operator that is included in P− has a further subtraction which removes the expec-

tation in the physical vacuum (this subtraction is not exactly a c-number but it acts like a

c-number in the physical subspace). This operator, ψ̄ψ2, with the further correction is the

operator in (13). We have ψ̄ψ2 = Z−Z+σ
∗
−σ+(eΛ

(−)
+ eΛ

(+)
+ − 1)+C.C. With all this machinery

we have the result that the growth of the mass squared of the Schwinger particle with µ is

given by −4πµ〈Ω(θ)|ψ̄ψ1|Ω(θ)〉 cos θ, but the vacuum remains translationally invariant since

it is ψ̄ψ2 that is used in (13). The question of how to extend these considerations to the

case of QCD will be important below.

The wave function renormalization constant, Z−, is determined by the relation

{ψ−(x), ψ∗
−(y)} = δ(x1 − y1). (15)

This relation necessarily involves the values of ψ− off the initial value surface, x+ = 0.

Roughly speaking, the complex dynamical problem of determining the vacuum in equal-time

quantization is replaced by the complex dynamical problem of determining Z− in light-cone

quantization. But Z− is just a constant and, while in principal it can be determined from

the above relation, it can also be fit to data, to a symmetry or to any other property of the

correct solution that is sensitive to Z−. In the case µ = 0, a full operator solution for the

Schwinger model can be given and Z− is known. Starting from that known value, Z− can

be expanded in a power series in µ. With the induced operator in place, all the well verified

results from equal-time quantization are reproduced in the light-cone representation [6].

If we now consider the case where the system is periodic in x− with period L (DLCQ),

which is useful for performing numerical calculations, we find that there are two important

differences as compared to the continuum case we have been discussing above. The first

difference is that both spurions , σ− and σ+, become dependent on the space-time variables,

in particular, on x−. The relations are

σ+(x) = e−i π
4Le

(x−−x+)Q+σ+(0)e−i π
4Le

(x−−x+)Q+ (16)

σ−(x) = e−i π
4Le

(x+−x−)Q−σ−(0)e−i π
4Le

(x+−x−)Q−. (17)

where Q+ (Q−) measures twice the electric charge of ψ+ (ψ−) fields. The other important

difference is associated with the fact that in the periodic case on the light-cone, the chiral
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condensate goes to zero as the periodic length, L goes to ∞. More precisely

〈Ω(θ)|ψ̄ψ|Ω(θ)〉 = − 1

L
cos θ, (18)

where θ is the vacuum angle. To restore equality with the continuum, whether quantized

at equal-time or on the light-cone, and with the periodic case quantized at equal time, we

must keep the wave function renormalization constant, Z−. It is not surprising that we must

keep this constant: determining it was a complicated dynamical problem in the continuum

and we should not expect to avoid that problem by introducing periodicity conditions. The

difference here is that Z− is not determined by a space-like anticommutator as it is in

the continuum. The reason is that Z− is determined by the behavior of the system near

p+ = 0 when the singularity is regulated in a way consistent with Lorentz invariance and

gauge invariance. Once we have regulated that singularity by introducing the periodicity

conditions, which violate both Lorentz invariance and gauge invariance, we have lost the

information needed to determine Z− and we do not regain it by taking the limit L → ∞.

Indeed, the only known way to determine Z− in the periodic case is to compare with the

continuum solution. For µ = 0, the solution is

Z− =
eLeγ

2π3/2
. (19)

Since we cannot in general calculate from first principles constants like this in the periodic

case, it must be fit in phenomenological applications that use DLCQ. We need to be aware

that in a DLCQ calculation Z− may depend on the periodicity length, L.

Apart from those two differences, the periodic case is much like the continuum case. In

particular, the vacuum still has the form (12). That form can be determined from the fact

that in light-cone gauge we have a residual gauge invariance corresponding to the gauge

function π
L
x− and that the generator of that residual gauge transformation is again the

chargeless combination of spurions. We again have an induced operator of the same form as

in the continuum.
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III. INDUCED INTERACTIONS IN QCD

A. Degrees of freedom

We now consider the case of QCD. The analysis is very similar to the case of the Schwinger

model. For some aspects of the analysis we can show that the two cases are the same, while

for other aspects we shall have to assume that the two cases are similar. We shall work out

the induced operators associated with the integration constant that must be included in the

solution of the constraint equation for ψ−. Actually, since we shall consider the periodic

case, the field in question is not strictly an integration constant. The spurions associated

with the field have a dependence on x−, just as they do in the periodic case of the Schwinger

model [12]. If we were to work in the continuum, the field in question would be an integration

constant and would be independent of x− [5]. In QCD with one flavour of quarks, the action

is

S =

∫

d4x

[

−1

4
TrFµνF

µν + iψ̄γµDµψ − µψ̄ψ

]

, (20)

µ, ν ∈ {0, 1, 2, 3}, x⊥ = (x1, x2), Dµ = ∂µ + igAµ. In light-cone gauge there are two induced

operators. One comes from the µψ̄ψ mass term, the other from the J⊥A
⊥ interaction of

transversely polarized gluons with the transverse part of the quark vector current.

We consider the case where the fermi fields ψ are antiperiodic in the x− direction but

may be continuous in the transverse direction [13]. We initialize the fermi fields at x+ = 0

in the standard way, except that we write their Fourier expansion in such a way as to allow

us to factor out the oscillating functions of x⊥:

ψ
(a)
+,s(0, x

−, x⊥) =
1√
Ω

∑

k⊥

eik⊥x⊥

ψ̃
(a)
+,s(0, x

−, k⊥)

ψ̃
(a)
+,s(0, x

−, k⊥) =

∞
∑

n=1

b(a)
s (n,−k⊥)e−ik−(n)x−

+ d
(a)∗
−s (n, k⊥, )e

ik−(n)x−

. (21)

Here

k−(n) =
(n− 1

2
)π

L
, (22)

(a) is a color index, s is a spin index, and Ω a normalisation factor chosen so that the

anti-commutation relations for quarks are

{b(a)
s1

(n, k⊥), b(b)∗s2
(m, p⊥)} = δk⊥−p⊥δnmδs1s2δab , (23)
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with similar relations for anti-quarks d. We initialize the field ψ0
−, which contains the degrees

of freedom in the ψ− field that are independent of the degrees of freedom in the ψ+ field, in

the same way;

ψ
0(a)
− (x+, x⊥) =

1√
Ω

∑

s,k⊥

eik⊥x⊥

∞
∑

n=1

β(a)
s (n,−k⊥)e−ik+(n)x+

+ δ
(a)∗
−s (n, k⊥)eik+(n)x+

. (24)

Here, we have defined

k+(n) =
(n− 1

2
)π

L
. (25)

The quantity in the second sum in each case is just a one dimensional fermi field and can

be bosonized in the standard way. We write:

ψ̃
(a)
+,s(0, x

−, k⊥) = e−λ
(a)(−)
s (x−,k⊥)σ

(a)
+,s(x

−, k⊥)e−λ
(a)(+)
s (x−,k⊥), (26)

where

λ(a)(+)
s (x−, k⊥) = −

∞
∑

n=1

1

n
C(a)

s (n, k⊥)e−ik̃−(n)x−

, (27)

λ(a)(−)
s (x−, k⊥) = −λ(a)(+)

s

∗
=

∞
∑

n=1

1

n
C(a)∗

s (n, k⊥)eik̃−(n)x−

, (28)

k̃−(n) =
nπ

L
, (29)

and

C(a)
s (n, k⊥) =

n−1
∑

ℓ=0

d
(a)
−s

(

ℓ+
1

2
, k⊥

)

b(a)
s

(

n− ℓ− 1

2
,−k⊥

)

+

∞
∑

ℓ=0

b(a)∗
s

(

ℓ+
1

2
,−k⊥

)

b(a)
s

(

ℓ+ n +
1

2
,−k⊥

)

−

∞
∑

ℓ=0

d
(a)∗
−s

(

ℓ+
1

2
, k⊥

)

d
(a)
−s

(

ℓ+ n +
1

2
, k⊥

)

. (30)

We define a similar bosonization for the ψ0
− field, though we shall not need all the resultant

operators. The operators corresponding to the C operators (the fusion operators) are un-

physical for ψ0
− (they are all tachyonic). Just as in the case of the Schwinger model, these

operators will not be included in the induced operators when the induced operators act on

physical states, although they are needed for the full canonical structure of the theory. We

shall not consider those operators further; the operators we need from the ψ0
− fields are
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their spurions σ−. In the continuum, all the spurions are independent of the space-time

coordinates; in the free, periodic case, σ+ depends on x− while σ− depends on x+. In the

periodic, interacting case all the spurions depend on x−. These facts are all in complete

analogy with the Schwinger model. The x− dependence of the σ+ spurion is straightforward

to work out and is given by

σ
(a)
+,s(x

−, k⊥) = e
−i π

4Lg

(

Q
(a)
+,s(k⊥)x−

)

σ
(a)
+,s(0, k⊥)e

−i π
4Lg

(

Q
(a)
+,s(k⊥)x−

)

, (31)

where

Q
(a)
+,s(k⊥) =

∞
∑

n=1

b(a)∗
s (n,−k⊥) b(a) (n,−k⊥) −

∞
∑

n=1

d
(a)∗
−s (n, k⊥) d

(a)
−s (n, k⊥) , (32)

The analysis of the x− dependence of the σ− spurion is more subtle and we do not have a

rigorous derivation. In the work below we shall not need to know the exact x− dependence;

we shall only use the property, which we shall assume holds, that there is no x− dependence

in products of spurions of the type σ∗
−σ+ when these products are applied to the vacuum.

One possibility, suggested by the Schwinger model, is

σ
(a)
−,s(x

−) = e
i π
4Lg

(

Q
(a)
−,s(k⊥)x−

)

σ
(a)
−,s(0)e

i π
4Lg

(

Q
(a)
−,s(k⊥)x−

)

, (33)

where

Q
(a)
−,s(k⊥) =

∞
∑

n=1

β(a)∗
s (n,−k⊥) β(a) (n,−k⊥) −

∞
∑

n=1

δ
(a)∗
−s (n, k⊥) δ

(a)
−s (n, k⊥) . (34)

In practice, the x− dependence of the spurions will not cause great complications, since

the spurions of the type σ− will always occur in combination with spurions of the type

σ+ in such a way that, when acting on physical states, the space-time dependence cancels

out. Spurions of the type σ+ alone will act non-trivially on physical states, but we know

their x− dependence (31). When they act to create a particle of momentum k−(n), their x−

dependence is given by eik−(n)x−

; when they act as destruction operators their x− dependence

is given by e−ik−(n)x−

. All we have done is rewrite the operators using algebraic identities; no

dynamics has been done and no approximations have been made. Therefore, the conservation

of momentum, which is easier to see in terms of the b and d operators, must also hold for

the bosonized form. The rule for σ− and σ+ just stated is what is required to implement

that; it would also be guaranteed by the x− dependence shown in (31).
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For completeness, we note the commutation relations of the spurions [14],

σ∗
τ (x)στ (x) = στ (x)σ

∗
τ (x) = 1

{σ∗
τ , (x)σρ(x)} = {στ (x), σρ(x)} = 0 (35)

[σ∗
τ (x), στ (y)] = [στ (x), στ (y)] = 0

where τ, ρ are differing labels indicating a Lorentz or colour structure, while x, y are differing

longitudinal co-ordinates. Spurions commute with the fusion operators (the C’s).

We shall also need the Fourier expansion of the transverse components of the gluon fields.

Defining A↑ = (A1 − iA2)/
√

2, A↓ = (A1 + iA2)/
√

2,

A(c)
s (0, x−, x⊥) =

1√
Ω

∑

k⊥

eik⊥x⊥

Ã(c)
s (0, x−, k⊥)

Ã(c)
s (0, x−, k⊥) =

∞
∑

n=1

1
√

2k̃−(n)

(

a(c)
s (n,−k⊥) e−ik̃−(n)x−

+ a(c)
s

∗
(n, k⊥, ) eik̃−(n)x−

)

,

We must now make an ansatz for the vacuum. On the basis of the Schwinger model we

might wish to assume

σ
(a)∗
−,−s(x

−, k⊥)σ
(a)
+,s(x

−, k⊥)|Ω〉 = κ|Ω〉, (36)

where κ is unimodular. If the theory is to be C-invariant we must have κ real, so κ = ±1.

We can write down the required state explicitly;

|Ω〉 =
∏

s ; a ; k⊥

( ∞
∑

n=−∞
(κ σ

(a)∗
−,−s(0, k⊥) σ

(a)
+,s(0, k⊥))n

)

|0〉 . (37)

However, this state is not gauge invariant, so the assumption (36) cannot quite be correct.

If we use the state |Ω〉 (37) as our ansatz for the vacuum, the structure of the induced

operators derived below is nevertheless gauge invariant. We therefore believe that there is

a derivation of them that does not involve non-gauge-invariant quantities in intermediate

steps. We shall proceed with the derivation using (37) as the vacuum, then afterwards, we

shall examine what properties of |Ω〉 were essential to the derivation. We shall exhibit a

gauge invariant state with the required properties .

B. Induced operators

The existence of ψ0
− induces two extra operators, I1 and I2, in the QCD Lagrangian, and

therefore in P−, from the mass term and J⊥A
⊥ respectively.
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Consider the first induced operator, I1, from ψ̄ψ [13]. Keeping only the terms that involve

ψ0
− we find that

I1 = µ

∫

dx− d2x⊥
(

ψ
(a)0
−,↓

∗
ψ

(a)
+,↑ + ψ

(a)
+,↑

∗
ψ

(a)0
−,↓ + ψ

(a)0
−,↑

∗
ψ

(a)
+,↓ + ψ

(a)
+,↓

∗
ψ

(a)0
−,↑

)

. (38)

From this we calculate that

I1 = µg1

∫

dx− d2k⊥
(

σ
(a)∗
−,↓ (0, k⊥)σ

(a)
+,↑(0, k⊥)

(

e−λ
(a)(−)
↑

(x−,k⊥)e−λ
(a)(+)
↑

(x−,k⊥) − 1
)

+C.C.+ spinflip
)

. (39)

Here, g1 is an unknown constant coming from a combination of wave function renormalization

constants. The minus 1, which removes the 1 in the normal ordered product of exponentials,

has the same source as it did in the case of the Schwinger model: it removes the expectation

value of I1 in the physical vacuum. other idearemove the minuIn general, the states that

the hamiltonian acts on will be given by a sum of products of ψ+ spurions and fusion

operators acting on the physical vacuum. We now commute the spurions from I1 through

any operators acting on the physical vacuum until they act directly on the physical vacuum.

When they act on the physical vacuum, they will just give κ. Commuting them through

may introduce a minus sign; it is never more complicated than a minus sign. We could

therefore remove the spurions from (39) and multiply by an appropriate ± but, rather than

do that and provide a rule for whether to use the plus or minus sign, we will leave them in

the operator, remembering that they have a very simple action on physical states. Once I1

contains no spurions, it will act equally on all components of the physical vacuum and we

can just take the bare vacuum as the representative state. That is all exactly in parallel with

the Schwinger model [6] except that, due to now acting on states with particles of different

k⊥, color, spin or flavor, there is a question of minus signs that did not arise before. Below,

we shall see an example where the question arises.

The operator I1 may not appear to be gauge invariant. But it does take gauge invariant

states into gauge invariant states. The gauge invariance results from special properties of the

spurions and the fusion operators and is basically due to the fact that the original form of

the operator, (38), is gauge invariant. As an example of that property we consider the action

of I1 on states of the type that would make up the valence states of helicity zero mesons.

Specifically, we consider the action of I1 on states of the type b(a)∗
↑(n,−k⊥)d(a)∗

↓(m, k⊥)|0〉.

13



We find that

I1 b
(a)∗

↑(n,−k⊥)d(a)∗
↓(m, k⊥)|0〉 = µg1κ

(

b(a)∗
↑(n− 1,−k⊥)d(a)∗

↓(m+ 1, k⊥)

− 2b(a)∗
↑(n,−k⊥)d(a)∗

↓(m, k⊥) + b(a)∗
↑(n + 1,−k⊥)d(a)∗

↓(m− 1, k⊥)
)

|0〉. (40)

In this equation, if n or m is equal to 1, then the term on the right hand side that contains

an index of zero is zero. The rule, (40), applies only to states containing a quark and an

antiquark of opposite spins, opposite transverse momenta, identical color and, if flavor is

included, identical flavor (these rules just assure that the pair of quarks could be created

from the vacuum by the action of a sum of products of a single type of λ field). If the state

contains quarks which do not satisfy any of the rules just stated then I1 acts successively

on each quark. If the quark is in the lowest (1
2
) longitudinal momentum state the result is

zero. Otherwise, we have a diagonal term, which gives µg1κ times the original state, plus

terms which give states with larger numbers of quarks through pair production. The terms

involving pair production are complicated and, since our first intended application is large

N gauge theory to which such terms do not contribute, we shall not consider these terms

further in the present paper. It may be noticed that if the subtraction of the expectation

value of I1 in the physical vacuum is omitted then the action on all states of the type not

considered in (40) is to give a diagonal term of zero while the diagonal part of (40) would

be zero.

Now let us consider the other induced operator, I2, which comes from the J⊥A
⊥ term.

I2 is given by

I2 = I2,1 + I2,2 + I2,3 + I2,4

= g

∫

dx− d2x⊥
∑

abc

λc
ab

(

ψ
(a)∗
+,↓ ψ

0(b)
−,↓A

(c)
↑ − ψ

0(a)∗
−,↑ ψ

(b)
+,↑A

(c)
↑ + ψ

0(a)∗
−,↓ ψ

(b)
+,↓A

(c)
↓ − ψ

(a)∗
+,↑ ψ

0(b)
−,↑A

(c)
↓

)

,

where g is the QCD coupling constant, and λc
ab is the colour factor. As before, from the ψ−

field we shall keep only the spurion. Consider the first term

I2,1 = gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abψ̃

(a)∗
+,↓ (x−, k⊥)σ

(b)
−,↓(x

−, k⊥ − p⊥)Ã
(c)
↑ (x−, p⊥). (41)

where g2 is an (unknown) renormalization constant. We insert 1, in the form σ
(b)∗
+,↑ (x−, k⊥ −
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p⊥)σ
(b)
+,↑(x

−, k⊥ − p⊥), to rewrite it as

I2,1 = gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

c
↑(x

−, p⊥)ψ̃
(a)∗
+,↓ (x−, k⊥)

σ
(b)
−,↓(x

−, k⊥ − p⊥)σ
(b)∗
+,↑ (x−, k⊥ − p⊥)σ

(b)
+,↑(x

−, k⊥ − p⊥). (42)

We can now commute the spurions among themselves to get a combination, in square brack-

ets below, that will act like a c-number when applied to the vacuum, to the far right:

I2,1 = −gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

(c)
↑ (x−, p⊥)ψ̃

(a)∗
+,↓ (x−, k⊥)σ

(b)
+,↑(x

−, k⊥ − p⊥)

[

σ
(b)
−,↓(x

−, k⊥ − p⊥)σ
(b)∗
+,↑ (x−, k⊥ − p⊥)

]

. (43)

Proceeding in this way we also obtain:

I2,2 = gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

(c)
↑ (x−, p⊥)σ

(a)∗
+,↓ (x−, k⊥ + p⊥)ψ̃

(b)
+,↑(x

−, k⊥)

[

σ
(a)∗
−,↑ (x−, k⊥ + p⊥)σ

(a)
+,↓(x

−, k⊥ + p⊥)
]

(44)

I2,3 = −gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

(c)
↓ (x−, p⊥)σ

(a)∗
+,↑ (x−, k⊥ + p⊥)ψ̃

(b)
+,↓(x

−, k⊥)

[

σ
(a)∗
−,↓ (x−, k⊥ + p⊥)σ

(a)
+,↑(x

−, k⊥ + p⊥)
]

(45)

I2,4 = gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

(c)
↓ (x−, p⊥)ψ̃

(a)∗
+,↑ (x−, k⊥)σ

(b)
+,↓(x

−, k⊥ − p⊥)

[

σ
(b)
−,↑(x

−, k⊥ − p⊥)σ
(b)∗
+,↓ (x−, k⊥ − p⊥)

]

. (46)

Spurions combinations in the square brackets turn into a c-number when they act directly

on the vacuum according the general rules

σ∗
−,↓(x

−, k⊥)σ+,↑(x
−, k⊥) → κ , σ∗

−,↑(x
−, k⊥)σ+,↓(x

−, k⊥) → κ

σ+,↑(x
−, k⊥)σ∗

−,↓(x
−, k⊥) → −κ , σ+,↓(x

−, k⊥)σ∗
−,↑(x

−, k⊥) → −κ

σ∗
+,↑(x

−, k⊥)σ−,↓(x
−, k⊥) → κ∗ , σ∗

+,↓(x
−, k⊥)σ−,↑(x

−, k⊥) → κ∗

σ−,↓(x
−, k⊥)σ∗

+,↑(x
−, k⊥) → −κ∗ , σ−,↑(x

−, k⊥)σ∗
+,↓(x

−, k⊥) → −κ∗

In general, the states that I2 acts on will be given by a sum of products of ψ+ spurions

and fusion operators acting on the physical vacuum. We can commute the operators in
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square brackets through the fusion operators and, sometimes with the multiplication by −1

due to (36), through the spurions. Once the bracketed operators act on the physical vacuum

they just give a c-number multiplier and we will show that the rest of the operator acts as if

in the bare (trivial) light-cone vacuum |0〉. Rather than try to construct a complicated set

of rules to determine when there is a minus sign, we shall leave the bracketed operators in

I2 to help keep the signs straight.

We now illustrate explicitly the action of I2 on meson states. Consider for example

the action of I2,1 (43) on the valence states of total momentum (P+, P⊥ = 0) of the type
∑

d b
(d)∗
↓ (n,−q⊥)d

(d)∗
↑ (K−n, q⊥)|Ω〉 , where we use DLCQ as a regulator with K = LP+/2π.

The spurions in square brackets (43) do not have the same quantum numbers as any fermionic

operator to their right, so we may commute them through to the right as a pair without

incuring a minus sign. This leads to

κ∗gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

(c)
↑ (x−, p⊥)ψ̃

(a)∗
+,↓ (x−, k⊥)σ

(b)
+,↑(x

−, k⊥ − p⊥)

∑

d

b
(d)∗
↓ (n,−q⊥)d

(d)∗
↑ (K − n, q⊥)|Ω〉. (47)

We now project out the part of this state containing no ψ0
− zero modes, which simply means

replacing |Ω〉 by |0〉. Commuting the final σ+ spurion through to this vacuum, and using

the property [14]

σ
(b)
+,↑(x

−, k⊥ − p⊥)|0〉 = e
iπx−

2L d
(b)∗
↓ (1, k⊥ − p⊥)|0〉 (48)

we obtain effectively

κ∗gg2

∫

d2p⊥d
2k⊥dx

−
∑

abc

λc
abÃ

(c)
↑ (x−, p⊥)

∞
∑

m=1

(

b
(a)∗
↓ (m,−k⊥)eik−(m)x−

+ d
(a)
↑ (m, k⊥, )e

−ik−(m)x−
)

∑

d

b
(d)∗
↓ (n,−q⊥)d

(d)∗
↑ (K − n, q⊥)e

iπx−

2L d
(b)∗
↓ (1, k⊥ − p⊥)|0〉 (49)

(Anti)-commuting annihilation operators through to the right and conserving momentum,

the final result is

− gg2κ
∗
∫

d2p⊥

√

π

K − n− 1

∑

abc

λc
abb

(a)∗
↓ (n,−q⊥)d

(b)∗
↓ (1, q⊥− p⊥)a

(c)∗
↑ (K−n− 1, p⊥)|0〉.

(50)

16



Analyzing, in a similar way, the other parts of I2, the only other non-zero contribution comes

from I2,3 to give

−gg2κ

∫

d2p⊥

√

π

n− 1

∑

abc

λc
abb

(b)∗
↑ (1,−q⊥ − p⊥)d

(a)∗
↑ (K − n, q⊥)a

(c)∗
↓ (n− 1, p⊥)|0〉 (51)

If either n or K − n are 1, then the corresponding term in the result, which has a zero in

the denominator, is zero. If we consider the spin flipped case, there are minus signs:

I2
∑

a

b
(a)∗
↑ (n,−q⊥)d

(a)∗
↓ (K − n, q⊥)|Ω〉 =

∫

d2p⊥ gg2κ

√

π

n− 1

∑

abc

λc
abb

(b)∗

↓ (1,−q⊥ − p⊥)d
(a)∗
↓ (K − n, q⊥)a

(c)∗
↑ (n− 1, p⊥)|0〉 +

∫

d2p⊥ gg2κ
∗
√

π

K − n− 1

∑

abc

λc
abb

(a)∗
↑ (n,−q⊥)d

(b)∗
↑ (1, q⊥ − p⊥)a

(c)∗
↓ (K − n− 1, p⊥)|0〉.

(52)

The net effect in all cases is to flip the helicity of the quark which emits a gluon. Thus,

quark helicity is no longer conserved. The results look similar to the standard QCD vertices

of the massive case µ 6= 0, except that the gluon always absorbs all the available longitudinal

momentum (all but one unit) from the quark and the momentum factors are different. We

give a few other examples which show that the induced operators include pair production:

I2 b
(a)∗

↓(n,−k⊥)d(b)∗
↓(1, k⊥ − p⊥)|Ω〉 = gg2κλ

c
ab

√

π

n
a(c)∗

↓(n,−p⊥)|Ω〉 (53)

I2 b
(a)∗

↓(1,−k⊥)d(b)∗
↓(n, k⊥ − p⊥)|Ω〉 = gg2κ

∗λc
ab

√

π

n
a(c)∗

↓(n,−p⊥)|Ω〉 (54)

I2 b
(a)∗

↑(n,−k⊥)d(b)∗
↑(1, k⊥ − p⊥)|Ω〉 = −gg2κλ

c
ab

√

π

n
a(c)∗

↑(n,−p⊥)|Ω〉 (55)

I2 b
(a)∗

↑(1,−k⊥)d(b)∗
↑(n, k⊥ − p⊥)|Ω〉 = −gg2κ

∗λc
ab

√

π

n
a(c)∗

↑(n,−p⊥)|Ω〉. (56)

Notice that the pair destruction only occurs when one quark is in the lowest longitudinal

momentum state, so pair production always creates such a state.

The non-conservation of quark helicity is crucial to obtaining a splitting of the pion and

helicity zero component of the rho meson in the chiral limit. The valence quark content of
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these states

∑

a

(

b
(a)∗
↑ (n,−k⊥)d

(a)∗
↓ (K − n, k⊥) ± b

(a)∗
↓ (n,−k⊥)d

(a)∗
↑ (K − n, k⊥)

)

|Ω〉 (57)

is only distinguished by symmetry under spin exchange. In the absence of I2 they would be

degenerate. We mention that in a U(N) gauge theory the spin exchange in the valence state

can proceed by annihilation through the color diagonal component of the gauge field. In

the case of QED, for example, this contributes to the hyperfine splitting of positronium. In

a chiral SU(N) gauge theory, spontaneous breaking of quark helicity symmetry is the only

way to achieve it.

Now we shall discuss the question mentioned above: the problem that (37) is not gauge

invariant. Suppose that, instead of (37), we took the vacuum to be

|Ω〉 =
∏

s ; k⊥

( ∞
∑

n=−∞
(κ
∑

a

σ
(a)∗
−,−s(0, k⊥) σ

(a)
+,s(0, k⊥))n

)

|0〉 . (58)

This state is gauge invariant but is no longer an eigenstate of the combination of spurions

in square brackets in (43) etc.. But when we project onto the subspace containing no

quanta from the ψ0
− fields, the only parts from (58) that contribute to that projection are

those of (37) (and only some of those states). Therefore, when we project the hamiltonian

eigenvalue equation onto the space containing no quanta from the ψ0
− fields, we find that

the relation (36) is satisfied. Thus we may solve the eigenvalue equation using the operators

as we have shown above, acting effectively in the bare vacuum |0〉. It may be that enforcing

the eigenvalue equation in the whole space would lead to no, or an insufficient number of,

eigenvectors. In that case we would have to make a physical subspace restriction to the

space containing no quanta from the ψ0
− fields. We believe that that can consistently be

done but we shall not pursue the question any further in this paper.

C. Scaling

In the periodic case of the Schwinger model, we know that the coefficient of the induced

operator scales with the periodic length, L, or, with the DLCQ harmonic resolution, K [6].

For the Schwinger model we can work out the coefficient in the continuum using the principle

that the fields should be canonical at spacelike separations. We can then fix the scaling for

the periodic case by requiring that the periodic case go the the continuum case as L→ ∞.
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In principle that same procedure could presumably be used for QCD. But given our present

ability to calculate that procedure is completely impractical. We anticipate that, until a

better idea or better computational methods become available, we shall simply fit g1 and g2

to symmetries or, if necessary, to data.

In some simple cases we can see what form the operator will approach, for a given scaling,

as the harmonic resolution becomes large and the calculation approaches the continuum

calculation. For the case of I1 applied to the simple meson valence states described in (40)

the result is particularly simple. We consider states of the form

|K〉 =

K−1
∑

n=1

f 2(x)b(a)∗
↑(n,−k⊥)d(a)∗

↓(K − n, k⊥)|0〉 (59)

where

x =
(n− 1

2
)

K
, (60)

and f 2 is the valence quark wavefunction. If there is no scaling, the operator I1 goes to zero.

If the scaling is linear in K, then (if κ is real) I1 goes to a pure endpoint operator; that

is, I1 |K〉 = c(b(a)∗
↑(1,−k⊥)d(a)∗

↓(K − 1, k⊥) + b(a)∗
↑(K − 1,−k⊥)d(a)∗

↓(1, k⊥))|0〉 where c is a

c-number depending on the value of f 2 at the endpoints and on the other parameters. (If κ

has a nonzero imaginary part, I1 is a derivative operator proportional to the imaginary part

of κ). This linear scaling case is much like the case of the Schwinger model. If the scaling

is quadratic, that is, g1 ∼ K2, then I1 is a second derivative operator, that is

I1

∫ 1

0

dx f 2(x) b(a)∗
↑(x,−k⊥) d(a)∗

↓(1 − x, k⊥)|0〉 ∼
∫ 1

0

dx
d2f 2(x)

dx2
b(a)∗

↑(x,−k⊥) d(a)∗
↓(1 − x, k⊥)|0〉 (61)

We know that there is nontrivial scaling in the Schwinger model, but the action of I1 on

states containing quarks not of the form used in (40) may mean that g1 cannot scale as a

positive power of K, since that would seem to lead to divergences. But it may be that those

divergences can and should be subtracted in some way. We leave the question of the scaling

of both g1 and g2 open and, in the next section, give some examples of possible scalings in

some simple models.
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IV. EXACT SOLUTIONS FOR SIMPLE MODELS

In this section and the next, we look at solutions for simple dimensionally reduced models

in 1+1 dimensions obtained by restricting to the k⊥ = 0 sector, meaning that we (classically)

discard all fields except those satisfying

∂x⊥
Aµ = ∂x⊥

ψ = 0 . (62)

We also work in the large N limit and suppress the color indices. These calculations will

illustrate the general effects described above and also allow us to investigate how the cou-

plings might scale with the cutoff. In the present section, we find exact solutions for the

dimensionally reduced P− containing only the induced operators. In the next section, we

analyze a gauged version of these dimensionally reduced models.

The reduced theories preserve total quark and gluon helicity, identified with the angular

momentum projection J3, a remnant of the 3+1 dimensional rotation symmetry. This leads

to doublets consisting of opposite helicities. There is also exact charge conjugation symmetry

C and an exact kinematic parity symmetry P of the valence part of wavefunctions: f 2(x, 1−
x) ↔ f 2(1−x, x). This kinematic valence parity only equals parity of the full wavefunction in

the free field limit, but is a convenient label. Thus, bound state energy levels can be labelled

by |J3|PC . We will be particularly be interested in the quantum numbers 0−±, 1−−, which

together form the quantum numbers of the pion (or eta’) and the three Lorentz components

of the rho meson. Generically, the 1−− doublet and the 0−− are split because of dimensional

reduction. We do not address the issue here of how to make a full degenerate Lorentz

multiplet for the rho quantum numbers, as this really requires transverse motion. Rather,

we wish to study splitting of the 0−± states, since this occurs only if the quark helicity alone

is not conserved. In 1+1 dimensions, to have canonically normalised kinetic terms, we rescale

fields ψ → ψ
√
V⊥, A⊥ → A⊥

√
V⊥, where V⊥ =

∫

dx1dx2 is the transverse volume factor.

The gauge coupling also becomes dimensionful through dimensional reduction, g2 → g2V⊥N ,

where we have also absorbed the colour factor N in the large N limit.

20



A. I2 only

In this subsection we shall consider the case where the entire P− is given by I2. Here, we

shall assume that g2 does not scale with K. We shall expand the wave function as

|φ〉 =
∑

x

f 2
↑↓(x)b

∗
↑(x)d

∗
↓(1 − x)|0〉 (63)

+
∑

x+y≤1

f 3
↓↑↓(x, y)b

∗
↓(x)d

∗
↓(1 − x− y)a∗↑(y)|0〉

+
∑

x+y+z≤1

f 4
↑↓↑↓(z, x, y)b

∗
↑(z)d

∗
↓(1 − x− y − z)a∗↓(x)a

∗
↑(y)|0〉

+ spin flip

This expansion includes all the states which can couple to the valence sector in this model,

so it is a complete expansion of the wave function in the helicity zero sector. The boundstate

equations for the meson invariant mass M are as follows.

M2f 2
↑↓(x) =

gg2√
x
f 3
↓↑↓(0, x)

+
gg2√
1 − x

f 3
↑↓↑(x, 1 − x) (64)

M2f 3
↓↑↓(x, y) =

gg2√
y
f 2
↑↓(x+ y)δ(x)

− gg2√
y
f 2
↑↓(x)δ(1 − x− y)

− gg2√
x
f 4
↑↓↑↓(0, x, y)

+
gg2√

1 − x− y
f 4
↓↑↓↑(x, y, 1 − x− y) (65)

M2f 4
↑↓↑↓(z, x, y) = −gg2√

x
f 3
↓↑↓(z + x, y)δ(z)

− gg2√
y
f 3
↑↓↑(z, x)δ(1 − y − z − x) (66)

with the same equations with ↑↔↓, (gg2) ↔ −(gg2). 0 is a shorthand for 1/2K, and 1 for

1−1/2K; if a denominator vanishes, then that term is excluded from the equation; we define

δ(x) = 0 if x 6= 0 otherwise 1. The equations can be solved algebraically as simultaneous

linear equations, to give the following effective equations in the valence sector.

M2f 2
↑↓(0) =

(gg2)
2

M2

(

f 2
↑↓(0) − f 2

↓↑(1)
)

(67)

M2f 2
↑↓(x)|x 6=0,1 =

(gg2)
2

M2x(1 − x)

(

1 +
4

M4

(gg2)2
− 1

x(1−x)

)

f 2
↑↓(x)|x 6=0,1 (68)
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Solutions of the first of these equations are delta functions at 0,1 and give the solutions for

the 0−+ (f↑↓(1) = f↑↓(0), f↑↓ = −f↓↑, M2 = ±
√

2gg2) and 0−− (f↑↓(1) = f↑↓(0), f↑↓ = f↓↑,

M2 = 0). The lower lying states would be identified as prototype pion and helicity zero

component of the rho; they are split even in the DLCQ continuum limit K → ∞.

There are some artifacts that occur due to keeping only I2 in this simple model. The

lowest lying states are tachyonic. In the large-N limit however, they are absolutely stable.

Opposite parity states (f↑↓(1) = ±f↑↓(0)) are degenerate. Also, there are solutions to the

second equation which are delta functions at specific values 0 < x < 1/2 with

M4 = (gg2)
21 ± 2

√

x(1 − x)

x(1 − x)
. (69)

This spectrum is continuous and, given that both signs are possible for M2, unbounded

below in the DLCQ continuum limit K → ∞. The unbound solutions at small x > 1/2K

are an artifact due to wee gluon emission. These artifacts will be avoided in a more realistic

gauged model (next section).

A similar analysis for the 1−− sector produces M4 = (gg2)
2 for delta function states at

x = 0, 1. These would partner the 0−− state and, although they are not degenerate in the

reduced model, would eventually form the rho Lorentz multiplet in higher dimensions.

B. I1 Scales Linearly with K

In this section we shall consider the possibility that I1 scales linearly with K, the scaling

that we know to be correct for the Schwinger model. We shall again work in the k⊥ = 0

sector and at large N . In this section we shall keep both I1 and I2 and the quark kinetic

energies assuming a quark bare mass of µ. With linear scaling (and real κ) the operator I1

becomes a pure endpoint operator operating only at x equals 0 or 1. The system is quite

singular and we shall use DLCQ as the regulator and specify that the physical limit is the

large K limit of DLCQ. Since the continuum limit operators couple the endpoints of the

wave function only to themselves and the state of two quarks and one gluon with all the

momentum in the gluon, we might therefore expect to find pion-like wave functions of the

form

1√
2
(b∗↓(0)d∗↑(1)|0〉 − b∗↑(1)d∗↓(0))|0〉 + C

(

b∗↓(1)d∗↓(0)a∗↑(1) + b∗↑(1)d∗↑(0)a∗↓(1)
)

|0〉. (70)
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We find that there is an eigenstate of this form and that if we choose κ = −1 and g1 = g11K,

then, to have a finite, nonzero result we must choose

g2 = g21K − g22 (71)

where

g21 =
4µ

g

√

g11µ+ 2µ2. (72)

g22 is a free parameter the sign of which has been chosen for convenience below. The

eigenvalue is given by

M2 =
4gg22

√

g11µ+ 2µ2

g11 + 6µ
. (73)

The constant C in (70) is given by

C =

√

g11µ+ 2µ2

2µ
. (74)

I1 becomes a pure endpoint operator only in the limit K → ∞. At finite K, I1 will

couple all the x values and we will necessarily have a wave function distributed over all x.

One may therefore ask if the limit of calculations done at finite, but increasing, values of K

contain an eigenstate which approaches the one described in the previous paragraph. The

answer is that they do in the limit µ >> g11. In the opposite limit, µ << g11, we find that

the results give

g21 =
µ

g

√

8(g11µ+ 4µ2). (75)

M2 =
4gg22

√

2(g11µ+ 4µ2)

g11 + 12µ
. (76)

C =

√

g11µ+ 4µ2

√
8µ

. (77)

For values of µ and g11 that lie between these extremes the results vary smoothly between

those of the previous paragraph and those just given. The reason for the difference is as

follows: keeping only the endpoint vectors, as we did in the last paragraph, amounts to

setting all the other values of f 2(x) equal to zero. If µ >> g11, then, at finite, increasing K,

the wave function does go to a concentration at the endpoint and, for sufficiently large K,

looks like an ever narrowing cusp. In the limit the point next to the endpoint completely

decouples and we get the same results as we do setting all the values of f 2(x) except for
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the endpoints equal to zero. But if µ << g11, then the wave function more resembles an

ever narrowing Gaussian and the effect of the point next to the endpoint never completely

goes away. That leads to the results quoted in the present paragraph which are derived on

the assumption that the value at the point next to the endpoint is equal to the value at the

endpoint.

C. I1 Scales Quadratically with K

In this section we shall assume that I1 scales quadratically with K. We shall keep I1, I2

and the quark kinetic energies with mass µ. We shall choose κ = −1 and take g1 = g11K
2.

In the limit of large K, I1 goes to a second derivative operator and we must have a wave

function distributed over all x.

In the present system we consider only the π and the helicity zero ρ.

The wave function for the pion (in the continuum) is of the form

|π〉 = C
(

a∗↓(1)b∗↑(0) d∗↑(0) + a∗↑(1)b∗↓(0) d∗↓(0)
)

|0〉

+

∫ 1

0

dx π(x)
1√
2

(

b∗↑(x) d
∗
↓(1 − x) − b∗↓(1 − x) d∗↑(x)

)

|0〉 . (78)

The system is very singular and we must give a meaning to the states a∗↓(1)b∗↑(0) d∗↑(0) and

a∗↑(1)b∗↓(0) d∗↓(0). We shall assume that the DLCQ regularization is appropriate and that the

correct continuum limit is the large K limit of DLCQ. The equation satisfied by the valence

wavefunction f 2(x) is found to be

−µg11
d2f 2

dx2
+

µ2

x(1 − x)
f 2 = M2f 2. (79)

The boundary conditions are determined by the operator I2 in the large K limit of DLCQ.

The simpler case is the helicity zero ρ, whose wave function is of the form

|ρ〉 =

∫ 1

0

dx ρ(x)
1√
2

(

b∗↑(x) d
∗
↓(1 − x) + b∗↓(1 − x) d∗↑(x)

)

|0〉. (80)

In this case the boundary condition for (79) is that we have the regular solution which is

zero at x = 0 and at x = 1. The kinetic energy can be treated as a perturbation and, for

the values of g11 and µ we shall consider below, it is negligible. For values of µ much less

than g11 we have

ρ(x) =
√

2 sin πx ; M2
ρ = µπ2g11 + 4.88µ2. (81)
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For values of µ which are not so small compared with g11, both the wave function and the

mass of the ρ can be expanded in a power series in µ2

The pion is a much more complicated system. To have a finite value for the pion mass

we must choose

g2 =
2

g

√

g11 µ3K
3
2 − 8µ3

3gg11

√
2K lnK − g22

√
K, (82)

where g22 is a free parameter. With that choice, the mass of the pion is given by

M2
π =

8µ3

g11

+ 4gg22

√

µ

g11

. (83)

It may appear that the mass squared of the pion goes like the square root of the quark bare

mass, but either or both of g11 and g22 could depend on µ so the complete dependence on

µ cannot be known until more information on the g’s is available. For g11 >> µ, and in the

normalization where the C in Eq.(78) is 1, π(x) is given, to a good approximation by

π(x) =

√

µ

g11
+

(

µ

g11

)
3
2

x(1 − x) ln [x(1 − x)] +

2gg22

g2
11

x(1 − x) +

(

µ

g11

)
3
2

x2(1 − x)2 ln [x(1 − x)]. (84)

Notice that we now have a singular solution to equation (79), which does not go to 0 at

x = 0 or at x = 1. The mass of the ρ is determined by µ and g11. If we choose µ = 5 and

g11 = 1.25 × 104 we find that the mass of the ρ is about 785. We must choose gg21 = 2500

and if we then choose gg22 = 2.45× 105 we find that the mass of the pion is about 140. For

that solution, and in the normalization where C = 1, the value of the endpoint of the pion

distribution is π(0) ≈ .02. π(x) is nearly flat as a function of x. While we cannot be sure

until we have done the calculation, we believe that if transverse dimensions are included,

the wave function will look something like the one given here for small k⊥, but will become

more and more like the wave function given here for the ρ as k⊥ increases. If the model

were realistic the (dimensionful) g’s would get their dimensions from ΛQCD (and µ). The

numbers just given are all consistent with a mass scale of a few hundred MEV but the

model is unphysical (or, at least runs counter to common ideas) in that the rho gets its mass

entirely from µψ̄ψ, whereas, presumably, the rho actually gets is mass from other operators,

probably a combination of the induced operators and the more conventional operators.

In many ways the possibility that the induced operators scale in a nontrivial way with

K seems attractive. But when they are scaled to increase in strength with increasing K,
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they also produce singularities when acting on states not included in the model calculations

above. We do not know if these can be controlled in higher dimensions, and consider the

precise scaling of the couplings to the induced operators to be open.

V. DIMENSIONALLY REDUCED GAUGE THEORY

A. Dimensional reduction

Since the quark helicity violating term I2 couples to the next-to-zero mode quark only, one

might suspect that the effects shown in section IVA disappear in the DLCQ continuum limit

L → ∞ of a non-trivial theory. We demonstrate in the following with explicit numerical

DLCQ calculations, in a dimensionally reduced gauge theory, that I2 leads to a splitting

in the spectrum between meson-like states with the quantum numbers of the pi and rho

mesons.

In this section, to be consistent with previous literature, we use the convention x± =

(x0 ± x3)/
√

2. The light-cone hamiltonian we use starts from the large N limit of eq. (20),

dimensionally reduced to 1 + 1 dimensions, with appropriately rescaled fields and coupling.

as in the last section. This results in a reduced action [15]

S →
∫

dx+dx−
{

−1

4
TrFαβF

αβ +
i√
2
(ū↑γ

α
(2)Dαu↑ + ū↓γ

α
(2)Dαu↓) +

µ√
2
(ū↑u↓ + ū↓u↑)

+ Tr

[

−1

2
D̄αArD̄

αAr − g2

4N
[Ar, As][A

r, As] +
1

2
m2

0ArA
r

]

− g√
2N

(ū↑(A1 + iγ5
(2)A2)u↑ − ū↓(A1 − iγ5

(2)A2)u↓)

}

. (85)

α and β ∈ {+,−}, r, s ∈ {1, 2}, γ0
(2) = σ1, γ3

(2) = iσ2, γ5
(2) = iσ1σ2, D̄α = ∂α + ig[Aα, .]/

√
N ,

Dα = ∂α +igAα/
√
N . The two-component spinors u↑ and u↓ are related to the original 3+1

dimensional ψ field by

21/4ψ

√

∫

dx1dx2 =



























u+,↑

u−,↑

u−,↓

u+,↓



























, u↑ =











u−,↑

u+,↑











, u↓ =











u−,↓

u+,↓











. (86)
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The suffices ↑, ↓, label helicity, while +, − indicates whether the fermions are right or

left moving with respect to x3. Since the gluon mass is not protected by transverse gauge

symmetry transformations in a dimensionally reduced model, we must allow a gluon mass

m0 in general. In fact, this will regulate small-x gluon divergences. u↑, u↓, A1, A2 represent

the transverse polarizations of the 3+1 dimensional quarks and gluons. In 1+1 dimensions,

where there is of course no spin, the fields appear as different flavours in fundamental and

adjoint representations.

In the massless quark limit, µ = 0, the u↑ and u↓ fields in (85) have separate conserved

U(1) fermion numbers, but no axial symmetries (with γ5
(2)). This U(1)xU(1) transcribes to

the left and right handed U(1) symmetries in 3+1 dimensions of a single flavour of massless

quarks in QCD. Thus, the dimensionally reduced model has the important property that

it inherits the chiral symmetries of QCD with massless quarks. Note that, with a single

flavour of quarks, the axial anomaly may spoil one of the U(1) symmetries, but in the large

N limit the anomaly is suppressed as it involves fermion pair production. Therefore it is

acceptable to work with one 3 + 1-dimensional flavour provided we also work at large N . It

is also necessary to work at large-N to have spontaneous symmetry breaking of continuous

symmetry in 1+1 dimensions. In 3+1 dimensions at large N with one flavour, one expects

the axial U(1)A combination to be spontaneously broken and a single Goldstone boson to

appear. In the reduced model, this corresponds to the U(1)xU(1) flavour symmetry being

broken down to its diagonal ‘total’ fermion number subgroup. The broken U(1) corresponds

to the charge Q̃5 measuring quark helicity. For massless quarks, the dimensionally reduced

hamiltonian contains no terms that flip quark helicity if we omit zero modes. In that case,

we find that the states 0−± are degenerate (no pi-rho splitting). Including zero modes and

using the non-abelian vacuum ansatz, described in section III, produces effective helicity-flip

interactions that split the multiplet. Our calculation later will make approximations that

probably break chiral symmetry explicitly, but not quark helicity symmetry, so that we do

not obtain an exactly massless Goldstone boson, but this is a separate issue that we do not

address in detail in this paper. The chiral properties of the reduced theory (85) have also

recently been studied by different methods in ref.[16].
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B. Boundstate Equations

In the light-cone gauge, the fields A+ and non-zero modes of u− are non-propagating in

light-front time x+ = (x0 + x3)/
√

2. We eliminate them using their constraint equations of

motion. The expansion in creation and annihilation operators for the dimensionally reduced

fermion u
(a)
+,s(x

+, x−), where (a) labels colour and s labels helicity, becomes

u
(a)
+,s(0, x

−) =
1√
Ω

∞
∑

n=1

b(a)
s (n)e−ik−(n)x−

+ d
(a)∗
−s (n)eik−(n)x−

. (87)

The expansion for transversely polarized dimensionally reduced gluons is similarly

A(c)
s (0, x−) =

1√
Ω

∑

n

1
√

2k̃−(n)

(

a(c)
s (n)e−ik̃−(n)x−

+ a
(c)∗
−s (n)eik̃−(n)x−

)

(88)

Note: if s =↑ then −s =↓, while ↑ indicates a helicity of value +1/2 for quarks while +1 for

gluons.

Introducing momentum fractions x = k̃−(n)/P+ or x = k−(n)/P+, for a helicity-zero

meson of total momentum P+ for example, the state invariant under residual global gauge

transformations is written

∑

a

∫

dxf 2
↑↓(x, 1 − x)b

(a)∗
↑ (x)d

(a)∗
↓ (1 − x) +

∫

dxf 2
↓↑(x, 1 − x)b

(a)∗
↓ (x)d

(a)∗
↑ (1 − x)

+
∑

abc

∫

dxdyf 3
↓↑↓(x, y, 1 − x− y)b

(a)∗
↓ (x)λc

aba
(c)∗
↑ (y)d

(b)∗
↓ (1 − x− y) +

∫

dxdyf 3
↑↓↑(x, y, 1 − x− y)b

(a)∗
↑ (x)λc

aba
(c)∗
↓ (y)d

(b)∗
↑ (1 − x− y) + · · · |Ω >

where · · · indicates higher numbers of gluon creation operators a∗ and |Ω > is our vacuum

ansatz with k⊥ omitted. The wavefunction components are normalised as

∫ 1

0

dx |f 2
↑↓(x, 1 − x)|2 + |f 2

↓↑(x, 1 − x)|2

+

∫ 1

0

dx

∫ 1−x

0

dy |f 3
↓↑↓(x, y, 1 − x− y)|2 + |f 3

↑↓↑(x, y, 1 − x− y)|2 + · · · = 1 (89)

Boundstate equations for the wavefunctions f can be obtained by applying the P− to a

meson state, such as eq.(89), and then projecting onto a given vector in the physical Fock

space (the sector built on the vacuum ansatz containing no u− zero modes). The resulting

equations are the same as those found in ref.[15], restricted to massless quarks µ = 0, with
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the addition of I2 interactions. We write them in terms of the invariant mass of the meson

boundstate M2 = 2P+P−. When we solve the equations numerically in section VC, we will

truncate the Fock space to the sectors of f 2 and f 3 (one-gluon approximation); therefore we

will display only the equations for this truncation. Defining h = gg2κ, we find

M2f 2
↑↓(x, 1 − x) =

m2
f

x(1 − x)
f 2

+−(x, 1 − x)

+
g2

π

∫ 1

0

dy

{

f 2
↑↓(x, 1 − x) − f 2

↑↓(y, 1 − y)

(y − x)2

}

+
h√
x
f 3
↓↑↓(0, x, 1 − x)

+
h√

1 − x
f 3
↑↓↑(x, 1 − x, 0) (90)

M2f 3
−↓↑↓(x, y, 1 − x− y) =

m2
b

y
f 3
↓↑↓(x, y, 1 − x− y)

+
g2

π

∫ 1−x

0

dz
1 + y − x− z

2(1 − x− y − z)2
√

y(1 − x− z)
{f 3

↓↑↓(x, y, 1 − x− y)

−f 3
↓↑↓(x, 1 − x− z, z)}

+
g2

π(1 − x− y)

(
√

1 +
1 − x− y

y
− 1

)

f 3
↓↑↓(x, y, 1 − x− y)

+
g2

π

∫ x+y

0

dz
x+ 2y − z

2(x− z)2
√

y(x+ y − z)
{f 3

↓↑↓(x, y, 1 − x− y)

−f 3
↓↑↓(z, x+ y − z, 1 − x− y)}

+
g2

πx

(√

1 +
x

y
− 1

)

f 3
↓↑↓(x, y, 1 − x− y)

+
g2

π

∫ 1−x

0

dz
f 3
↓↑↓(x, z, 1 − x− z)

(1 − x)
√
yz

+
g2

π

∫ x+y

0

dz
f 3
↓↑↓(x+ y − z, z, 1 − x− y)

(x+ y)
√
yz

+
h√
y
f 2
↑↓(x+ y, 1 − x− y)δ(x)

− h√
y
f 2
↓↑(x, 1 − x)δ(1 − x− y) (91)

and the same equations with ↑↔↓, h ↔ −h. mb is m0 after renormalisation resulting from

normal ordering. Although not necessary for our purposes of demonstrating pi-rho splitting,

for generality we added a quark ‘kinetic’ mass mf in the f 2 sector. This does not break

quark helicity symmetry but may violate equal-time chiral symmetry. In fact we expect that
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FIG. 1: Quark helicity flip process involving I2. Solid lines are quarks (x+-instantaneous when

barred), chain lines are gluons. Vertices are labelled by their corresponding couplings.

DLCQ and a one-gluon truncation breaks this chiral symmetry, since it is a dynamical one,

so that such counterms in the hamiltonian should be allowed. They can in principle be tuned

to partially restore the explicitly broken chiral symmetry, for example by imposing PCAC

on vacuum-to-pseudoscalar matrix elements. The corresponding boundstate equations for

a meson with non-zero total helicity is the same as above, with suitable modified helicity

labels and signs of the h interaction following from eqs.(47)

C. DLCQ gauge theory solution

The endpoint delta functions of momentum, seen in section IVA, now become spread

out by the additional interactions. The I2 interaction, that acts at endpoints only, couples

to a part of the wavefunction of measure zero. One therefore expects the direct effects of I2

in splitting the 0−+ and 0−− to vanish as DLCQ K → ∞. However, I2 can combine with

other interactions to produce helicity-flip effects away from the endpoints.

An example at order h2g4 is illustrated in Figure 1. The value that this process contributes
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to the expectation value of M2 can be calculated in light-cone perturbation theory

h2

(

g2

π

)2 ∫ 1

0

dx

∫ 1

x

dz
f 2
↑↓(x, 1 − x)f 2

↓↑(z, 1 − z)

(1 − x)2
(

M2 − m2
b

1−x

)

(z − x)
(

M2 − m2
b

z−x

)(

M2 − m2
b

z

)

z2
(92)

If f 2 and M2 are finite, then this contribution is finite for finite h.

The dimensionally reduced QCD boundstate equations truncated to at most one gluon

were solved numerically in DLCQ for the range K = 5 to K = 30. The particular choice

of the relevant parameters mb, mf , g, h is not very important since we did not try to tune

them to obtain the best phenomenology. However, they were zoned to ensure absence of

tachyons, that the 0−± and 1−− states were the lightest in the spectrum, and a reasonable

splitting of the 0−± states compared to their masses. A typical result for the spectrum in

this case is shown in Figure 2.

The M2 eigenvalues have been fit to the form

M2 = A +
B√
K

+
C

K
+

D

K2
. (93)

The polynomial dependence on 1/K follows from the fact that DLCQ effectively discretizes

the integrals in (90)(91) by the trapezium rule. If the integrands are singular then non-

polynomial finite-K errors can also occur. In particular there are square root endpoint

singularities that give rise to 1√
K

dependence. The singular longitudinal gauge interactions

give rise to a 1
Kβ dependence, where β depends on how the wavefunctions vanish at small x

(if at all). β is unknown a priori but is dynamically determined. Although techniques exist

for handling this error [17], for simplicity we did not include it because our fits were good

enough for demonstrating splitting without it. The graph of fig.2 shows that the splitting of

the 0−± survives the DLCQ continuum limit K → ∞. (The lightness of the 1−− is accidental

in this example).

VI. CONCLUSIONS

Unphysical modes associated with the (operator valued) integration constants that must

be included in the solutions of the constraint equations that arise in quantizing QCD in

the light-cone representation, dress the bare light-cone vacuum and induce operators into

the dynamics. In this paper, we have derived two such operators, based on an ansatz for

the vacuum that comes partly from analysis and partly from analogy with the Schwinger
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FIG. 2: Variation of mass squared M2 with DLCQ cutoff K for the lightest three energy levels.

The raw DLCQ data is smoothly extrapolated to K = ∞: solid line 0−−; chain line 0−+; gray line

1−−
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model. One of these operators breaks quark helicity conservation for zero quark bare mass.

We have demonstrated — explicitly in the case of a dimensional reduced gauge theory —

how these operators lead to a splitting of the masses of the pion and rho, the helicity zero

components of which would be degenerate otherwise.

The vacuum we have used in this paper is probably not the full vacuum, which may well

include gluons; even the fermion content we have presented here might not be complete.

Furthermore, we have had to make some guesses in the derivation and these might have to

be revised after further study. We do believe that the qualitative mechanism for spontaneous

symmetry breaking presented in this paper is correct and that the fermion content of the

vacuum is either as we have presented it or very similar. While we could obtain the form

of induced operators, we do not have reliable estimates for their coefficients, including the

possibility that if they are included in a DLCQ calculation these coefficients might scale in

a nontrivial way with the DLCQ harmonic resolution, K.

A natural framework for explicit DLCQ calculations in 3 + 1 dimensions would be trans-

verse lattice QCD [18], where similar induced operators will arise to spontaneously break

quark helicity symmetry. Previous calculations used a trivial vacuum where it was necessary

to break it explicitly in the Lagrangian [19]. Another question concerns the perturbation of

our results in quark mass µ, which we have only briefly addressed here, and the relationship

with the results of ref.[11]. These topics are now under investigation. Finally we draw the

readers attention to other recent work on chiral symmetry in light-cone field theory using

path integrals [20].
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