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Introduction
I The search for the Higgs boson and the nature of EWSB is

among the primary objectives of the LHC
I Strong limits have already been placed by ATLAS and CMS
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Introduction
I Standard searches rely on counting methods and looking for

excesses over expected background
I In addition the shapes of invariant mass distributions are also

used
I In some cases, multiple observables in an event are measured

well enough to warrant multi-variate methods
I Have been used at Tevatron and B factories and include neural

nets, boosted decision trees, and the Matrix Element Method
(MEM)

I These methods optimize the full physics information of an event,
but can be computationally intensive

I For some processes analytic expressions for the fully differential
cross section can be used in a MEM

I One such process dubbed the ’Golden Channel’ is measured very
precisely and can be computed analytically in a straightforward
way
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Objective

I Use analytic expressions for the fully differential cross sections to
set up a MEM and examine resonances in the
pp → ZZ ∗ → `+`−`+`− channel

I Quantify improvement in discovery/exclusion significance gained
by using the full kinematic distribution

I Conduct analysis for a range of masses (130− 1000 GeV) at a 7
TeV LHC

I Apply analysis to the case of hypothesis testing to discriminate
between different signals

I Study ability of analysis to extract/constrain parameters as well as
spin and CP properties of the resonance
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Golden Channel

I R → ZZ ∗ → `+`−`+`− referred to as ’golden channel’ because of
good invariant mass resolution and well controlled background

I Traditional search strategy focuses on measuring invariant mass
(ŝ) of the four leptons

I However, given that four-momenta of leptons can be
reconstructed precisely, it is possible to measure more than just ŝ

I Has been examined using the MEM in earlier studies in the
context of signal discrimination for 10 and 14 TeV

De Rujula, Lykken et al: arXiv:1001.5300, Gao, Gritsan, Melnikov et al: arXiv:1001.3396

I Typically thought to be an "easy" mode of Higgs
discovery...however...
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Golden Channel
I Suffers from small cross sections due to branching fractions of

H → ZZ ∗ ∼ .3 and Zs to leptons ∼ .0335
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Golden Channel: Background

I qq̄ → ZZ ∗ → `+`−`+`− is the dominant irreducible background for
170 . mh

I We consider the leading order u and t channel Feynman diagrams
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Background: Helicity Amplitudes

I The fully differential cross section is calculated in a helicity basis
allowing the Z bosons to be off-shell following,

Hagiwara,et.al.,Nucl.Phys.B 282, 253 (1987)

I Makes physics of process more transparent and tractable
I The amplitude factorizes into one production and two decay

amplitudes

q(kq, σ) + q̄(kq̄, σ̄)→ Z1(k1, λ1)Z2(k2, λ2)

Z1(k1, λ1)→ `1(p1, σ1) + ¯̀1(p2, σ2)

Z2(k2, λ2)→ `2(p3, σ3) + ¯̀2(p4, σ4)
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Background: Production Amplitudes

I The production helicity amplitude for qq̄ → Z1Z2 in the CM frame
reads

MZZ
σσ̄;λ1λ2

= 4
√

2
(

gZqq̄
∆σ

)2
ε δ|∆σ|,±1

A∆σ
λ1λ2

(Θ) dJ0
∆σ,∆λ(Θ)

4β1β2 sin2 Θ + (1− β1β2)2 − x2(1 + β1β2)2

where ∆σ = σ − σ̄, ε = ∆σ(−1)λ2 , ∆λ = λ1 − λ2,
J0 = max(|∆σ|, |∆λ|), and dJ0

∆σ,∆λ(Θ) are the d functions defined
in PDG

I We can study the high energy behavior by looking at the
coefficients A∆σ

λ1λ2
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Background: Production Amplitudes
I Looking at the coefficients

A∆σ
±∓ = −

√
2(1 + β1β2) ,

A∆σ
±0 =

1
γ2(1 + x)

[
(∆σ∆λ)

(
1 +

β2
1 + β2

2
2

)
− 2 cos Θ

−(∆σ∆λ)(β2
2 − β

2
1)x − 2x cos Θ− (∆σ∆λ)

(
1−

β2
1 + β2

2
2

)
x2
]

A∆σ
0± = A∆σ

±0 , γ1 → γ2, x → −x

A∆σ
±± = −(1− β1β2) cos Θ− λ1∆σ(1 + β1β2)x

A∆σ
00 = 2γ1γ2 cos Θ

[
((1− x)β1 + (1 + x)β2)

√
β1β2

1− x2
− (1 + β2

1β
2
2)

]
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Background: Differential Cross Section

I The final partonic fully differential is found by averaging the
squared sum of these amplitudes over spin and color

dσ
dΩ dm2

1 dm2
2

= 2π
1
4

1
3

1
2ŝ

β1(1 + x)

32π2

(
1

32π2

)2 ( 1
2π

)2 ∑
σ,σ̄,σi

|M(σ, σ̄;σi )|2

where Ω = {Θ, θ1, θ2, φ1, φ2} and
dΩ = d cos Θ d cos θ1 d cos θ2 dφ1 dφ2)

I For the initial state we include u, d, s, and c quarks
I For the final state we include the 3 separate channels eeµµ, 4µ

and 4e
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Background: Invariant Mass

I Energy dependence is dominated by the ZZ ∗ threshold
I Peaked around threshold and then quickly dies off
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Golden Channel: Higgs
I gg → H → ZZ ∗ → `+`−`+`− through a top quark loop generated

by effective the operator

L =
αs

12πv
HGµνGµν

I We consider the LO contribution only which is given by
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Higgs: Production Amplitudes

I For a Higgs, being a scalar, the two Z bosons can only have the
the helicity combinations (0,0) and (±1,±1)

I The amplitudes are

MZZ
h;±1±1 =

αsm2
Z ŝ

3πv2((ŝ −m2
h)2 + m2

hΓ2
h)1/2

MZZ
h;00 = γ1γ2(1 + β1β2)

αsm2
Z ŝ

3πv2((ŝ −m2
h)2 + m2

hΓ2
h)1/2

I As expected from the Higgs mechanism theMZZ
h;00 amplitudes

dominate in the high energy limit
I The fully differential cross section is formed similarly as for the

background
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Golden Channel: Other Resonances

I We also consider general spin 0, 1, and 2 cases which couple to
ZZ ∗ through the following operators:

I Spin-0 Scalar

L0+ =
1
Λ

H(A1
~Wµα

~Wµα + A2BµαBµα)

I Spin-0 Pseudo-Scalar

L0− =
i
Λ
εµαστH(A3

~Wµα
~Wστ + A4BµαBστ )
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Golden Channel: Other Resonances
I Spin-1 Vector

L1+ =
1

Λ2 (∂µHα + ∂αHµ)(A1
~W λ
µ
~Wαλ + A2Bλ

µBαλ)

I Spin-1 Pseudo-Vector

L1− =
i

Λ2 ε
µναρ[A3( ~W λ

µ (Dα
~Wνρ)− (Dα

~W λ
µ ) ~Wνρ

+A4Bλ
µ(DαBνρ)− (DαBλ

µ)Bνρ]Hρ

I Spin-2 Vector

L2+ =
1
Λ

Hµν(A1
~Wµ
α
~W να + A2Bµ

αBνα)

I Spin-2 Pseudo-Vector

L2− =
i
Λ
εµναρHνρ(A3

~Wµα ~W ρβ + A4BµαBρβ)
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Golden Channel: Observables

I We consider only the exclusive ZZ ∗ → 4` process
I In the eeµµ channel there is no ambiguity in defining the lepton

angles since the final states are distinguishable
I For the 4µ and 4e channels we use the reconstructed Z masses

to distinguish the pairs
I In the massless lepton approximation there are 12 observables

per event (pT , η,Φ for each lepton)
I Using momentum conservation and the azimuthal symmetry of

the detector we can reduce these to the set
xi ≡ (x1, x2,M1,M2, ŝ,Θ, θ1, φ1, θ2, φ2)
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Golden Channel: Observables

(a) (b)

q̄(kq̄)

x̂CM x̂CM

ẑCM ẑCM

Z1(k1)Z2(k2) Z2(k2) Z1(k1)

Θ

−φ1
π − φ2

θ1θ2

$1(p1)

$̄1(p2)

$2(p3)

$̄2(p4)

q(kq)

R.V-M

I Θ: polar angle of the incoming quark in the CM frame
I θ1,2: polar angle of `1,2 in the Z1,2 frame
I φ1,2: azimuthal angle of `1,2 in the Z1,2 frame
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Golden Channel: Distributions

I The angular distributions can add to our discriminating power
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Statistical Analysis: Matrix Element Method

I Likelihood methods are frequently employed to establish the
presence, or lack of a signal using kinematic distributions which
discriminate signal from background

I A likelihood function is defined for each hypothesis to quantify the
probability of obtaining the actual data under that particular
hypothesis

I To reject or accept a hypothesis a test statistic must also be
defined

I In QFT there is a natural object for quantifying the probability of
obtaining a particular event for a given data set; the differential
cross section

I The Matrix Element Method: use of likelihood methods where
normalized differential cross sections are used as pdf in the
likelihood
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Statistical Analysis: Likelihood Function

I When the overall number of events is not fixed one needs to
employ an Extended Maximum Likelihood (EML) method

I The unbinned likelihood for some collider signature with unknown
expected number of events µ is given by,

L(µ;θ) =
e−µµN

N!

N∏
i=1

P(θ; xi)

I The EML function for a signal plus background hypothesis is then

Ls+b(µ, f ,mh) =
e−µµN

N!

N∏
i=1

[fPs(mh; xi) + (1− f )Pb(xi)]
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Statistical Analysis: PDFs

I Ps and Pb are the signal and background pdfs (normalized
differential cross sections)

I For the Higgs signal we have

Ps(mh; x) =
1

εsσs(mh)

(
fg(x1)fg(x2)

s

)
d σ̂h(mh, ŝ,m1,m2,Ω)

dm2
1 dm2

2 dΩ

I For the qq̄ background

Pb(x) =
1

εbσqq̄

((
fq(x1)fq̄(x2)

s

)
d σ̂qq̄(ŝ,m1,m2,Ω)

dm2
1 dm2

2 dΩ
+

(
fq̄(x1)fq(x2)

s

)
d σ̂qq̄(ŝ,m1,m2,Ω

′)

dm2
1 dm2

2 dΩ′

)

where Ω′ ≡ (π −Θ, θ1, θ2, φ1 + π, φ2 + π) for initial quark in the −z
direction and we have switched x1 and x2
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Statistical Analysis: Test Statistic

I As a test statistic we would like one who’s distribution tends to a
gaussian even in the low statistics regime

I For this we can define our significance in terms of the log
likelihood ratio

S =
√

2lnQ
where Q is the likelihood ratio given by

Q =
Ls+b

Lb

I To obtain the expected significance we construct the PDF for S by
conducting a large number of pseudo experiments and obtaining
S for each one

I From these pseudo experiments, a distribution for the expected
significance along with the spread is obtained
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Analysis: Expected Significance
I The log likelihood ratio was shown to be a robust test statistic

even in the low statistics regime
I For a large enough set of pseudo experiments, the distribution S

defined in terms of Q converges to a gaussian
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Figure 2: Histograms of Sc1, Sc12 and SL2 determined from from 9 791 successful fits to toy experiments, with
Nb, Ns and m0, the particle mass, as free parameters. The curves show the results of a Gaussian fit to the
distributions. In addition to the “Mean” and “RMS” of the histograms the parameters of the fitted Gaussian,
“Constant”, “Mean” and “Sigma”, are shown in the plots. The number of signal events is 25, the background
level amounts 40%.

7

LEP Working Group: arXiv:9903282, V. Bartsch, G. Quast:CMS NOTE 2005/004
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Expected Significance

I When there exist free parameters in the underlying hypothesis,
the likelihood will in general depend on parameters which are not
directly observable (i.e. mass, couplings, etc.)

I Thus we remove the dependance of S on the undetermined
parameters by maximizing the EML function prior to the
construction of the likelihood ratio

I So we have for the likelihood ratio

Q =
Ls+b(N̂t , f̂s, m̂h; xi)

Lb(N̂t ; xi)

where N̂t , f̂s, m̂h are the values which maximize the EML function
for a given pseudo experiment (i.e. the statistically preferred
values)
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Expected Significance: All Obervables vs. ŝ
I We can compare the performance of the fully differential cross

section vs the invariant mass distribution before detector effects
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I We see that for mh . 170GeV no sensitivity is gained by including
the angles

I Still useful for signal discrimination in the range mh . 170GeV
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Statistical Analysis: Exclusion Limit

I We determine the exclusion limit by setting an upper limit on the
signal fractional yield, 0 < f = µs

µs+µb
< 1

I We define a pdf by considering Ls+b as a function of f

p(f ) =
Ls+b(N, f , m̂h)∫ 1

0 Ls+b(N, f̄ , m̂h) df̄

The 95% C.L. limit on f for a given set of data is given by α as
follows: ∫ α

0
p(f ) df = 0.95

I Can translate α into a 95% C.L upper limit on σs through

σs =

(
εb
εs

)(
f

1− f

)
σb
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Detector Effects: Smearing
I We apply separate smearing to energy of the electrons and pT of

the muons according to CMS TDR
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Detector Effects: pT dependence
I For simplicity we consider only the 0-jet bin and since we are

considering only LO assume events have no intrinsic pT
I Cuts and detector smearing can shape distributions and introduce

a pT dependence even when only considering the LO process
I To find the ZZ CM frame, must ensure pT is be properly boosted

away on an event by event basis
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Detector Effects: Cuts
I We require: pT > 10 GeV, η < 2.5, and 150 < ŝ < 450
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Efficiencies and Yields
I After detector effects and cuts we obtain the following efficiencies

and yields for the 2e2µ channel at 2.5fb−1

Signal

mh(GeV) σ(fb) ε 〈N〉
175 0.218 0.512 0.279
200 1.26 0.594 1.87
220 1.16 0.625 1.81
250 0.958 0.654 1.57
300 0.714 0.701 1.25
350 0.600 0.708 1.06

Background - 8.78 0.519 11.4

R.V-M

I The efficiencies for 4e and 4µ are the same as for 2e2µ while the
yields (cross sections) are half as large

I It is these cross sections × efficiencies which we use to normalize
our pdfs in the likelihood function
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Results: Expected Significance
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Results: Expected Significance
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Results: Expected Significance
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Results: Exclusion Limits

æ

æ

æ

æ

æ

æ

æ

æ

200 220 240 260 280 300 320 340
0

1

2

3

4

mh HGeVL

95
%

C
.L

.l
im

it
on

Σ
�Σ

SM
Integrated Luminosity: 2.5fb-1

R.V-M

36 / 39



Results: Exclusion Limits
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Ongoing and Future Work

I Currently working to implement analysis for other resonances
including CP odd/even spin 1 and 2 which decay to ZZ ∗

I Working to also conduct signal discrimination studies in regions
with low background where clean signal samples can be obtained

I Would like to include other production mechanism such as weak
vector boson fusion

I Would like to include other final states such as those where one Z
is allowed to decay to jets or missing ET as well as allow for ISR

I Include higher order corrections to increase the precision of these
analysis
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Conclusions

I We have analyzed the Higgs “Golden Channel” at a 7TeV LHC
using a Matrix Element Method analysis

I We have compared how the MEM performs when one uses the
full kinematic information of the event in addition to the total
invariant mass and find improvements on the order of 10− 20%
depending on the Higgs mass

I Multi-variate methods can be powerful analysis tools for
processes where multiple observables are measured sufficiently
well

39 / 39


