
1/28

Bayesian reweighting for PDFs
(arXiv:1310.1089)

Nobuo Sato
Florida State University

In collaboration with:
J. Owens

H. Prosper



2/28

Background/motivation:

I The reweighting method allows us to modify PDFs to include new
data without performing a global fit.

I The technique was proposed by Giele and Keller (hep-ph/9803393)
and later developed by the NNPDF collaboration
(hep-ph/1012.0836, hep-ph/0912.2276).

I If the theoretical description of the new data is time consuming for
global fits, the reweighting is an efficient alternative.

I It can be seen as a complementary tool for global fits.
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Notation:

I pdf : probability density function.

I PDF : parton distribution function.
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Outline:

I The reweighting technique.

I A recipe to reweight PDFs.

I Application of the reweighting: single inclusive direct photon data
from fixed target experiments.
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The reweighting technique
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Bayesian statistics in a nutshell:

I Consider two observables A and B and
a sample of N data points {Ai, Bj}.

P (Ai, Bj) =
nij
N

(1)

P (Ai) =

∑
j nij

N
(2)

P (Ai|Bj) =
nij∑
i nij

(3)

=
nij
N

N∑
i nij

(4)

=
P (Ai, Bj)

P (Bj)
(5)

P (Ai|Bj)P (Bj) = P (Ai, Bj) (6)

The Bayes theorem:

P (B|A) =
P (A|B)

P (A)
P (B) (7)

= probability of B given A
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The reweighting ≡ Bayes theorem

I Consider a model with parameters ~α that describes some observable.
(e.g cross sections as a function of pT distribution)

I Using some data (labeled as Dold), we fit the parameters ~α.

I The uncertainties of the fit and its central values gives an estimate
of the parent distribution (a pdf) for ~α: P(~α)

I With a new evidence Dnew the Bayes theorem states that:

P(~α|Dnew) =
P(Dnew|~α)

P(Dnew)
P(~α) (8)

posterior = likelihood × prior

I The posterior depends on how we quantify Likelihood.
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How to construct the Likelihood ∝ P(Dnew|~α)?

I Suppose that the new data consist of n data points arranged as a
vector ~y with covariance matrix Σ. (for simplicity lets consider only
uncorrelated errors.)

I Using the prior pdf P(~α) we compute the n predictions ~t for the new
data.

I Assuming Gaussian statistics we can write

P(~y|~α) dny =
∏
j

1√
2πσ2

j

e
− 1

2

(
yj−tj
σ2
j

)2

dyj

=
1

(2π)n/2|Σ|1/2 e
− 1

2χ
2(~y,~t ) dny, (9)
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How to construct the Likelihood ∝ P(Dnew|~α)?

P(~y|~α) dny =
1

(2π)n/2|Σ|1/2 e
− 1

2χ
2(~y,~t ) dny (10)

I Notice that we can write

dny = χn−1 dχ dΩn−1 (11)

I Alternatively, the probability of the new data to be confined in a
differential shell χ to χ+ dχ is given by

P(χ|~α) dχ =
1

2n/2−1Γ(n/2)
χn−1e−

1
2χ

2

dχ, (12)

I By construction P(χ|~α) contains less information than P(~y|~α).
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The recipe for reweighting

I Suppose we have at our disposal a model with fitted parameters ~α
with its uncertainties (≡ P(~α)).

I Suppose that we can describe an observable O as a function of the
model.

I The expectation value for the observable can be written as

E[O] =

∫
dnαP(~α)O(~α) =

1

N

∑
k

O(~αk) (13)

I and the variance is given by

Var[O] =
1

N

∑
k

(O(~αk)− E[O])2 (14)
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The recipe for reweighting

I With the new evidence D we
can replace P(~α) by P(~α|D).

E[O] =

∫
dnαP(~α|D)O(~α)

=

∫
dnα
P(D|~α)

P(D)
P(~α)O(~α)

=
1

N

∑
k

wkO(~αk) (15)

Var[O] =
1

N

∑
k

wk(O(~αk)− E[O])2

(16)

I Notice that O( ~αk) is sampled
with the prior distribution.

I Method 1

P(~α|~y) =
P(~y|~α)

P(~y)
P(~α)

⇓

wk ∝ exp

(
−1

2
χ2( ~αk,~tk)

)
I Method 2

P(~α|χ) =
P(χ|~α)

P(χ)
P(~α)

⇓

wk ∝ exp

(
−1

2
χ2( ~αk,~tk)

)
×
(
χ2( ~αk,~tk)

) 1
2 (n−1)

I Q: Which method is better?
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Simple numerical example:

1. Construct simulated data from
f(x, ~α) = x−2(1− x)2 using
Gaussian noise with
uncorrelated errors.

2. Fit a model
f(x, ~α) = xα0(1− x)α1 with a
subset of the simulated data.

3. Get a Monte Carlo sample
{~αk}.

4. Get predictions for a different
subset of the simulated data for
each ~αk.

1. Compute the weights {wk}.
2. Obtain expectation values and

variances.

3. Compare the results with a fit
that include both data sets.
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Simple numerical example: simulated data
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I For the analysis we split the
data as follows

SET data
A0 d5
A1 d4, d5, d6
A2 d3, d4, d5, d6, d7
A3 d2, d3, d4, d5, d6, d7, d8
A4 d1, d2, d3, d4, d5, d6, d7, d8, d9
A5 d0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10

SET data
B1 d4, d6
B2 d3, d4, d6, d7
B3 d2, d3, d4, d6, d7, d8
B4 d1, d2, d3, d4, d6, d7, d8, d9
B5 d0, d1, d2, d3, d4, d6, d7, d8, d9, d10

SET data
C5 d0, d10

I A0 ≡ black color data.

I A1 ≡ red + black color data,
etc.
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Simple numerical example: reweighting set A0 with sets Bi
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I Dashed: global fit (black is the fit with only A0)

I Dotted: reweighting with method 1 (likelihood ∝ P(~y|~α))

I Solid: reweighting with method 2 (likelihood ∝ P(χ|~α))
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Simple numerical example: reweighting set A4 with sets C5

I Q: What if the initial data constrains well the parameters ~α?
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I A: The two methods yield statistically equivalent results.

Conclusions:

I The method 1 is more efficient than method 2 as expected.

I Reweighting method 1 is statistically equivalent to global fit.

I The method 2 is equivalent to global fit in the limit where the prior
parameters are well constrained.
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The NNPDF paradox

I The NNPDF collaboration argues that the reweighting with method
1 is incorrect (see arxiv:1012.0836, arxiv:1108.1758).

I Consider n−dimensional space where n is the number of data points
and the origin is at the prior predictions ~t( ~α0) for the new evidence.

I The distance for a given point ~y to the origin is given by
χ2 = (~y − ~t)T Σ−1(~y − ~t). Notice that Σ−1 is the metric for this
space.

I Sets of constant χ2 are n− 1 dimensional surfaces. The NNPDF
collaboration integrates the surfaces which gives method 2 for the
reweighting.

I This is equivalent to ignoring the direction of the new evidence in
the n−dimensional space, and therefore having less information.



17/28

The recipe for reweighting PDFs
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The recipe for reweighting PDFs
I Typically, for hadron collisions, the cross sections are given by

σ(τ) =

∫ 1

0

dxafa/A(xa)

∫ 1

0

dxbfb/B(xb)

∫ 1

0

dτ̂ σ̂a,b(τ̂) δ (τ − τ̂xaxb)

I A random PDF can be written as

fk(x) = f0(x) +
t

2

∑
j

[f+j (x)− f−j (x)]Rkj (17)

I Then a random cross section will be given by

σk(τ) =

∫ 1

0

dxaf
k
a/A(xa)

∫ 1

0

dxbf
k
b/B(xb)

∫ 1

0

dτ̂ σ̂a,b(τ̂) δ (τ − τ̂xaxb)

I Comparing with experimental cross sections we obtain {wk}. We
can finally obtain the reweighted PDFs:

E[fa] =
1

N

∑
k

wkf
k
a and Var[fa] =

1

N

∑
k

wk(fka − E[fa])2

(18)



19/28

The recipe for reweighting PDFs

I The statistical convergence of the reweighting depends on the
number of Monte Carlo samples.

I Instead of using

σk(τ) =

∫ 1

0

dxaf
k
a/A(xa)

∫ 1

0

dxbf
k
b/B(xb)

∫ 1

0

dτ̂ σ̂a,b(τ̂) δ (τ − τ̂xaxb)

I we should use

σk(τ) = σ00(τ) +
t

2

∑
j

σ0j(τ)Rkj +
t2

4

∑
j

σij(τ)RkiR
k
j (19)

I σ00 is the calculation using the central PDFs

I σ0j uses a central PDF and the difference in the j-th eigen PDFs

I σij uses differences in the i-th and j-th eigen PDFs
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Example:
I data: single inclusive direct photon data from fixed target

experiments.

I Due to inconsistencies between the data and its theory predictions @
NLO in pQCD, the data were excluded from global fits.

I Better theoretical description using threshold resummation @
NLO+NLL is available.

I prior PDFs: CJ12min

I for pp and pN collisions, direct photon cross sections are sensitive to
initial state gluons.

I Currently, the information on the gluon PDF comes from Jet data.
Yet its uncertainties are still large in the kinematic region of direct
photon data.
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Theory of direct photons

At LO:

(a) direct contribution (b) jet fragmentation

p3T
dσ(xT )

dpT
=
∑
a,b,c

fa/A(xa, µIF ) ∗ fb/B(xb, µIF ) ∗Dγ/c(z, µFF ) ∗ Σ̂(x̂T , ...)

I Direct contribution: Dγ/γ = δ(1− z)
I Jet fragmentation: Dγ/c ∼ αem/αS
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Theory of direct photons

Beyond LO:

p3T
dσ(xT )

dpT
=
∑
a,b,c

fa/A(xa, µIF ) ∗ fb/B(xb, µIF ) ∗Dγ/c(z, µFF ) ∗ Σ̂(x̂T , ...)

Σ̂(x̂T , ...) ⊃

1 LO
αsL

2 αsL αs NLO
α2
sL

4 α2
sL

3 α2
sL

2 α2
sL NNLO

...
...

...
...

...
αnsL

2n αnsL
2n−1 αnsL

2n−2 ... NnLO

LL NLL NNLL ...

x̂T = 2pT /z
√
ŝ

ŝ = xaxbS

L = ln(1− x̂2T ) “Threshold logs”

if αS L
2 ∼ 1 resummation is needed.
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Preliminary results:

reweighting using UA6 data



24/28

Example: single inclusive direct photon data UA6 pp
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Example: single inclusive direct photon data UA6 pp̄
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Note about tolerance factor

I CTEQ, MSTW, uses a tolerance criterion.

I The idea is to define an acceptable region in the vicinity around
minimum of the χ2 such that ∆χ2 < t.

I Then the uncertainties in the PDFs are enhanced by a factor of t.

I This procedure can be mimicked by the reweighting method in two
ways:

1. reweight PDFs with t = 1 and then enhance the uncertainty by a
factor of t.

2. replace the weights by χ2
k → 1

tχ
2
k
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Example: single inclusive direct photon data UA6 pp
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I t1 : a tolerance factor for the PDF uncertainty.

I t2 : a factor to modify the weights.

I The normalization uncertainty is included using the χ2

χ2 =
∑
i

(
Di + nDiλ− Ti

σi

)2

+ λ2. (20)

I n = 11% for UA6 data

I Full analysis including more data sets (WA70,E706,ISR,...) is in
preparation.
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Conclusions

I A reweighting technique with 2 different prescriptions has been
presented.

I A simple numerical exercise, shows that one of the methods is
statistically equivalent with global fits.

I A recipe to reweight non Monte Carlo based PDFs such as CTEQ,
MSTW has been presented.

I Some preliminary results on PDF reweighting using single inclusive
direct photon data have been shown.


