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Introduction

1. Dark Matter and WIMPs
2. SuperCDMS Soudan

I The detectors
I Performance
I CDMSlite analysis
I High threshold analysis

3. SuperCDMS SNOLAB project

I Experiment design

I Science goals

I Estimated backgrounds

I Projected sensitivity
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Dark Matter in the Universe?

1

I Modern interest but a old problem, dates back to 1930s
I Oort noticed discrepancies with nearby star velocities
I Zwicky noted galactic velocities in the Coma Cluster are too large

for the mass
I Rubin measured galactic rotation curves, going too fast
1

Freese 2009
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Composition of the Universe

2

I We don’t know much about the majority of the universe

I Assuming the SM is complete, we are 5% done

I Most of the matter is invisible according to cosmological data

2
PLANCK 2015 - arXiv:1502:01582
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The WIMP hypothesis

3 4

I WIMP - ’Weakly’ Interacting Massive Particle

I A 100 GeV particle with weak couplings gives correct relic density -
WIMP ’Miracle/Coincidence’

3
arXiv:0901.4090 [hep-ph]

4
X-ray: NASA/CXC/CfA/ M.Markevitch et al.;Lensing Map: NASA/STScI; ESO WFI; Magellan/U.Arizona/ D.Clowe et

al.Optical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al.;
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Paths to discovery
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Direct detection event rates

I Direct detection experiments rely on having a target material, wait
for 220 km/s WIMP wind to blow

I Expect a local DM density of ≈0.4 GeV/cm3

I Rate should modulate annually due to Earth’s motion around Sun 5

5
DAMA/LIBRA claims to have seen this signal
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Direct detection event rates
dR
dER

= ρ0
mnmχ

∫∞
vmin

vf (v)dσWN
dER

(v ,ER)dv

With:

ER =
µ2
Nv

2(2−cosθ)
mN

- recoil energy

f (v) - normalized WIMP velocity distribution in detector frame
uN =

mχmN

mχ+mN
- reduced mass

vmin =
√

mNER

2µ2
N

- minimum velocity for recoil energy ER

dσWN
dER

= mN

2µ2
Nv

2 (σSI0 F 2
SI (ER) + σSD0 F 2

SD(ER))

I Contributions for particle, nuclear and astro physics

I We expect just a few events every year from WIMPs

reference : arXiv:1002.1912 [astro-ph.CO]
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Choice of target material

6

I Event rates depend on WIMP and target nuclei mass

I Thresholds matter a lot, especially for low masses!

I Spin-dependent interactions add a whole additional layer of
complexity

6
arXiv:1308.0044 [astro-ph.IM]
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WIMP-nucleus interactions

I Interactions come in two types
1. Nuclear recoil (NR) - recoils against nucleus
2. Electron recoil (ER) - recoils against surrounding electrons
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Overview of direct detection approaches

7

7
arXiv:1203.2566 [physics.ins-det]
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Phonons and TES

W Transition
edge sensor

Al absorber

Cooper pairs

I Phonons are an quantum of vibration

I Transition Edge Sensor is held at critical
temperature → large changes in R
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SuperCDMS Soudan

I Located in Soudan Underground Lab, ≈ 1
2 mile underground with

2090 M.W.E. of overburden

I Utilizes the shielding and cryostat from CDMS-II experiment

I Started exposure in March 2012 and finished main exposure in May
2014

I Currently doing dedicated studies and disassembling
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interleaved Z-sensitive Ionization and Phonon (iZIP)
Detectors

I Detector array :15 Ge iZIP detectors (0.6 kg each) held at 50 mK

I 4 phonon and 2 charge channels on each detector face

I Phonon channels are grounded, charge channels are biased at ± 2 V

I Field configuration causes events near surface to have charge
collection localized to one side
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Nuclear recoils in crystals

8

I Nuclear recoils have only a fraction of their energy in ionization
I Can be reasonably modeled using Lindhard model
8

arXiv:1304.6773 [physics.ins-det]
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Rn and 210Pb

9

I Rn is common in atmosphere, produced by U/Th chain

I Pb/Po atoms can ’plate-out’ onto surfaces

I 210Pb has a 22y half life > lifetime of experiment

I Contamination becomes a source of gammas, betas and 206Pb nuclei

9
figure from arXiv:1101.0126 [nucl-ex]
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Discrimination

I Two of the detectors are faced with a 210Pb implanted Si wafer as a
calibration source for 206Pb nuclei and low-energy betas

I Yield is still a powerful discriminant but can be combined with
charge asymmetry to improve rejection of surface events

I Set an upper limit of 1.3 x 10−5 for surface event rejection power in
the nuclear recoil signal region
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HV Biasing

I Phonons are created from charges passing through a crystal through
Luke-Neganov effect

I The contribution to total phonon energy goes as Ne/heVb :
proportional to bias voltage Vb

I High bias voltage allows us to measure small amount of charges
through phonon signal (CDMSlite mode)

I Trade-off: no separate measurement of primary phonon signal,
sacrifices ER/NR discrimination
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CDMSlite : Introduction

I Low Ionization Threshold Experiment (Lite) - using T5Z2
I Uses L-N amplification to measure small charge signals using

phonons
I Two physics runs, separated by cryogenic maintenance
I Run 1 results published in PRL 112, 04130 in 2013

1. Vb = 69 V bias
2. 6.5 kg-d exposure

I Run 2 ran Feb-Nov 2014, results shown at TAUP2015
1. Vb = 70 V bias
2. Utilizes one detector, 70.10 kg-d exposure
3. Divided into two sub periods due to cryo maintenance
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CDMSlite : Energy Scale Calibration

I Ge has some low energy activation lines = calibration source

I Activation comes from periodic 252Cf calibration
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CDMSlite : Energy Scale Stability

I Many things (temperature, HV fluctuations, ect..) can affect energy
scale

I Tracking the peak allows us to correct for it
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CDMSlite : Fiducial Volume

I Detector is housed in a grounded Cu housing

I Not all portions see full bias potential → low energy tails in peaks

I Betas, alphas and many gammas will propagate this region

I Bottom line : We want to cut away the sidewall portions
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CDMSlite : Fast and slow Pulse shapes

I Reconstructed using a two-template
optimal filtering algorithm

I Fast template gives information about
position, slow template contains
information about energy
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CDMSlite : Radial Cut

I A new background appeared in second portion of run
I Higher values indicate higher radius, keep events below lines
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CDMSlite : Radial Cut Efficiency

I Activation events appear uniformly throughout detector, can be used
for calibration

I Half-lives of activation peaks are known → can estimate non-peak
tails assuming decay + constant background
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CDMSlite : Overall efficiency

I Veto events with activity in other iZIPs or muon panels

I Biggest hit comes from fiducialization
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CDMSlite : Results

I Rely on Lindhard to convert to keVnr scale
I Limits set using Yellin optimal interval method 10

10
arXiv:physics/0203002
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High mass WIMP search : Introduction

I Search uses data collected from Feb 2012 - May 2014

I Utilizes majority of the detector array excluding CDMSlite detector

I Collected about 2500 kg-days of raw exposure

I Heavy masses → more energy, thresholds don’t matter as much

I Downside, lower number density → fiducial volumes and exposures
are critical

I Background rejection is very good at high energies, also makes
modeling difficult
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High mass WIMP search : Sources of Backgrounds

I Bulk gammas - modeled with
133Ba gamma calibration data

I Betas - modeled from 210Pb
source and Ba data

I 210Pb induced surface events -
rates can be measured through
alphas, modeling based on
controlled sources (calibration
plates, test facilities)

I Zero charge - originate from
gammas interactions in regions
with weak E-field at high radius,
traditionally removed through
ionization threshold
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High mass WIMP search : Projected Sensitivity

I Analysis will focus on a subset of our best
detectors

I Several techniques being pursued such as
aBDT, cut-and-count and profile likelihood

I Assumptions used to derive sensitivity
estimate

1. 60-65% fiducial volume
2. 95% data quality efficiency
3. Phonon thresholds as measured for

the individual detectors
4. 11-14 detectors used

I Limits will be improved by an order of
magnitude over CDMS-II analysis
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SuperCDMS SNOLAB : Introduction

I One of three G-2 experiment selected to go forward
I SuperCDMS SNOLAB, whole new experiment at Creighton Mine,

Sudbury, Canada
I SNOLAB : ≈ 2 km underground; 6010 mwe of shielding from

cosmics; entire lab is class 2000 cleanroom
I Space at SNOLAB is reserved in ladder labs
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SuperCDMS SNOLAB : Overburden

I For comparison : Soudan is .7
km underground

I Muons can induce neutrons
from surrounding rock and
materials

I Materials can become activated
by cosmic rays

1. Ge → 71Ge
2. Cu → 60Co
3. H → 3H

I Going three times deeper buys
orders of magnitude reduction
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SuperCDMS SNOLAB : iZIP Detectors

2 

TES$11$

TES$6$

TES$8$TES$7$

TES$9$

TES$10$

Side$1$ Side$2$

TES$1$

TES$3$

TES$4$TES$2$

TES$0$ TES$5$

I Crystal dimensions : 33 mm thick, 100 mm diameter

I Two target materials : Ge (1.39 kg/detector) and Si (0.6
kg/detector)

I 6 phonon channels and 2 charge channels on each detector face
(interleaved like in SuperCDMS Soudan detectors)
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SuperCDMS SNOLAB : HV Biasing

I Larger crystals will allow for increase from 70V to 100V
I Exploring double sided bias mode to improve fiducial volume
I Expected trigger threshold for SNOLAB: 70 eVt (total phonon

energy); at 100 V bias this corresponds to single electron-hole pairs

Robert Calkins /SuperCDMS SMU 2015 October 19, 2015 34 / 41



SuperCDMS SNOLAB : Towers and Payload

I Baseline design consists of 8 towers

I One tower will be entirely HV biased, with a mix
of Ge and Si detectors

I One tower will consist of Si detectors

I Optimization of exact payload is still on-going

Robert Calkins /SuperCDMS SMU 2015 October 19, 2015 35 / 41



SuperCDMS SNOLAB : Shielding Design

I Similar to Soudan design, water tanks instead of poly in outer layers
I Lead shielding will consist of two layers, outer lead and an inner

ancient Pb liner
I Inner poly maybe replaced with an active neutron veto in a future

upgrade after initial deployment
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SuperCDMS SNOLAB : Science Goals

I Mix of Ge/Si and HV/iZIP gives four WIMP search configurations

1. Ge iZIP - 36 detectors, 50 kg
2. Si iZIP - 6 detectors, 4.1 kg
3. Ge HV - 4 detectors, 5.6 kg
4. Si HV - 2 detectors, 1.4 kg

I HV detectors provide sensitivity to lowest masses while iZIP
detectors cover above ≈5 GeV/c2

I Different targets let us study non-standard interactions

I Can search for axions and lightly ionizing particles

I Expect to observe coherent scattering of 8B solar neutrinos

I Cryostat will allow for future payload upgrades

Robert Calkins /SuperCDMS SMU 2015 October 19, 2015 37 / 41



SuperCDMS SNOLAB : Background Sources

I Same sources as Soudan HT analysis will also be present at
SuperCDMS SNOLAB

I Neutrons are a dominant background for high mass WIMP searches,
electron recoils dominate low mass search

I Lack of background discrimination in HV detectors means we need
to get low energy background rates down during construction

I The lower background means that new background sources become
important like 3H
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SuperCDMS SNOLAB : Expected Background Rates

Material 238U 232Th 40K Reference
Polyethylene 0.03 mBq/kg 0.02 mBq/kg 0.1 mBq/kg DEAP
Copper 0.07 mBq/kg 0.02 mBq/kg 0.04 mBq/kg XENON100
Lead 0.66 mBq/kg 0.5 mBq/kg 7.0 mBq/kg XENON100

Detector and Housing surfaces 206Pb: 25 nBq/cm2 SuperCDMS Soudan

Type Soudan Calculated Singles Rate SNOLAB Assumed Singles Rate
events/keVr/kg/yr events/keVr/kg/yr

Cosmogenic Neutrons 1.5 × 10−4 2.8 × 10−5

Radiogenic Neutrons 8 × 10−4 2.5 × 10−5

Bulk Gammas 1.1 × 103 2.2
Top/bottom Surface β 1.2 1.2
Radial Surface β 114 4.4

Top/Bottom Surface 206Pb 0.18 0.18

Radial Surface 206Pb 23 1

Cosmogenic Activation (3H) - 16.4 (Ge), 93.3 (Si)

I Backgrounds are simulated using a GEANT4 based framework

I Contamination rates are taken from literature

I Gamma rate is driven by contamination in Cu cryostat
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SuperCDMS SNOLAB : Projected Reach
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SuperCDMS

I SuperCDMS SNOLAB will be leading the way at for low mass
WIMPS using HV biased detectors

I Standard detectors will give sensitivity to intermediate mass range;
expect to reach neutrino floor around 10 GeV/c2
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Conclusion/Summary

I Dark matter is one of the big open puzzles in physics

I CDMSlite results are currently the most sensitive in the 2-5 GeV
range

I We have collected ≈ 2500 kg-days of raw exposure with
SuperCDMS Soudan for the high mass WIMP search

I Aim is to have a high mass result at beginning of 2016

I As Soudan operations shut down, focus turns to SuperCDMS
SNOLAB project

I SuperCDMS SNOLAB will have superior sensitivity to low mass
WIMPs

I Agency review process ongoing; CD-1 in a few weeks

I We hope to start collecting data in a few years at SNOLAB!
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11

...and we hope to do even better!

11
Zero Gravity: The Lighter Side of Science; Detecting the Dark; Michael Lucibella Feb 2014
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The SuperCDMS Collaboration - 2015
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Backup

Backup slides
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Projected exposure for Soudan HT analysis
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Projected Reach - 5 years exposure details

I 80% duty cycle

I Ge iZIP : 200 kg-y

I Si iZIP : 15 kg-y

I Ge HV : 22 kg-y

I Si HV : 5 kg-y
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Pulse Simulation
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CDMSlite unexpected background
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Yellin Optimal Interval
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Conceptually similar to the optimal gap method except that it allows for
1 event to fall into region. Assumes all events are signal.
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