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Stealth Dark Matter is a new model of DM
• Dark matter candidate is a “dark baryon” of 

an SU(4) gauge theory, with constituent 
fermions carrying electroweak charges 

• Fermion mass is of order the confinement 
scale.  No effective analytic methods - use 
lattice to fill in the gaps!
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• Discrete exchange symmetry eliminates one-
photon interactions with stealth DM; leading 
direct detection through dimension-7 EM 
polarizability or Higgs exchange 

• Other signatures (collider especially) are 
worth exploring, we have some ideas



Outline

1. Motivation: the state of particle dark matter 

2. Composite dark matter 

3. A case study: stealth dark matter 

4. Outlook
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1. Motivation: particle dark matter



Particle dark matter: what do we know?

• Strongest evidence for dark matter (cosmology from CMB, lensing, 
large-scale structure) is all sensitive only to gravitational interactions 

• However, interaction with ordinary matter is motivated by relic density 
coincidence (and by wanting to do experiments).  Three ways to 
search in experiment, easy to picture through crossing symmetry:
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“Indirect detection” “Direct detection” “Collider”



The picture* for direct detectionOnwards and downwards

*assuming coherent, fp=fn interaction (i.e. Higgs exchange) 
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FIG. 4. Upper limits on the velocity-averaged DM annihilation cross section at 95% confidence level for DM annihilation to
bb̄ (left) and ⌧+⌧� (right). Limits for each DES candidate dSph, as well as the combined limits (dashed red line) from the
eight new candidates are shown. Here we assume that each candidate is a dSph and use an estimate of the J-factor based on
photometric data (see text). For reference, we show the current best limits derived from a joint analysis of fifteen previously
known dSphs with known J-factors (black curve) [19].
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*assuming the same 2->2 process dominates both relic 
density and present-day DM annihilation



The picture* for collider bounds 11

]2 [GeV/cχM

-110 1 10 210 310

]
2

-N
u
cl

e
o
n
 C

ro
ss

 S
e
ct

io
n
 [
cm

χ

-4510

-4310

-4110

-3910

-3710

-3510

-3310

-3110
CMS MonoJet

CMS MonoPhoton

CDF 2012

XENON-100 

CoGeNT 2011

CDMSII 2011 

CDMSII 2010

CMS
 = 7 TeVs

-1
L dt = 5.0 fb∫

a) Spin Independent

]2 [GeV/cχM

-110 1 10 210 310

]
2

-N
u
cl

e
o
n
 C

ro
ss

 S
e
ct

io
n
 [
cm

χ

-4510

-4310

-4110

-3910

-3710

-3510

-3310

-3110
CMS MonoJet

CMS MonoPhoton

CDF 2012

SIMPLE 2010

CDMSII 2011

COUPP 2011

 
-

W+Super-K W
-

W+IceCube W

CMS
 = 7 TeVs

-1
L dt = 5.0 fb∫

b) Spin Dependent

Figure 4: Comparison of the 90% CL upper limits on the dark matter-nucleon scattering
cross section versus mass of dark matter particle for the (left) spin-independent and (right)
spin-dependent models with results from CMS using monophoton signature [14], CDF [15],
XENON100 [16], CoGeNT [17], COUPP[18], CDMS II [19, 20], Picasso [21], SIMPLE [22], Ice-
Cube [23], and Super-K [24] collaborations.

Table 6: Observed 90% CL limits on the dark matter-nucleon cross section and effective contact
interaction scale L for the spin-dependent and spin-independent interactions.

Spin-dependent Spin-independent
Mc (GeV/c2) L (GeV) scN (cm2) L (GeV) scN (cm2)

0.1 754 1.03 ⇥ 10�42 749 2.90 ⇥ 10�41

1 755 2.94 ⇥ 10�41 751 8.21 ⇥ 10�40

10 765 8.79 ⇥ 10�41 760 2.47 ⇥ 10�39

100 736 1.21 ⇥ 10�40 764 2.83 ⇥ 10�39

200 677 1.70 ⇥ 10�40 736 3.31 ⇥ 10�39

300 602 2.73 ⇥ 10�40 690 4.30 ⇥ 10�39

400 524 4.74 ⇥ 10�40 631 6.15 ⇥ 10�39

700 341 2.65 ⇥ 10�39 455 2.28 ⇥ 10�38

1000 206 1.98 ⇥ 10�38 302 1.18 ⇥ 10�37

L and the dark matter-nucleon cross section for the spin-dependent and spin-independent
interactions.

Exclusion limits at 95% CL for the large extra dimension ADD model parameter MD as a func-
tion of the number of extra dimensions are given in Table 7. A comparison of these results with
results from previous searches is shown in Fig. 5. These limits are an improvement over the
previous best limits, by ⇠2 TeV/c2 for d = 2 and 0.7 TeV/c2 for d = 6.

7 Summary

A search has been performed for signatures of new physics yielding an excess of events in the
monojet and Emiss

T channel. The results have been used to constrain the pair production of
dark matter particles in models with a heavy mediator, and large extra dimensions in the con-
text of the Arkani-Hamed, Dimopoulos, and Dvali model. The data sample corresponds to an
integrated luminosity of 5.0 fb�1 and includes events containing a jet with transverse momen-
tum above 110 GeV/c and Emiss

T above 350 GeV/c. Many standard model processes also have

(arXiv:1206.5663)

*assuming MET is the best way to probe the dark sector



Beyond the usual pictures

• There are a few particularly interesting properties that are 
worth looking for in the space of dark matter models:
- Non-standard scaling of nuclear couplings (reconcile direct-detection 

discrepancies, or suggest novel signatures) 
- Direct coupling to SM for relic density, but suppressed today 

(reconcile indirect-detection results with a thermal relic) 
- Novel collider signatures (are there interesting collider searches that 

we’re overlooking?)  
- Strongly self-interacting (explain galactic structure anomalies?)

• Composite dark matter can exhibit all of these properties!



2. Composite dark matter 
(a) Stability and relic density



Strongly-coupled composite dark matter

• Focus on composite DM as a strongly-bound state of some 
more fundamental objects (think of the neutron) 

• Dark-sector fundamental fermions can carry SM charges, giving 
charged excited states active in early universe. 

• Composite DM relic interacts via SM particles (photon, Higgs) 
but with form factor suppression! 

• Here I take SU(N) gauge theory w/fundamental rep. fermions; 
not the most general possibility, but a well-motivated and 
familiar starting point



Composite dark sector spectrum

• QCD spectrum gives us a 
rough idea of what to expect: 
lightest mesons Π, baryons, 
lots of excited states 

• DM candidate must be neutral, 
but many of these states can 
be charged under the SM!  
Many implications… 

• Note: we know the QCD 
spectrum from experiment, but 
this plot is from lattice, which 
we can apply to more general 
theories!  I’ll frequently use 
lattice results from here on.



Lattice field theory, in one slide

• Start with the path integral (formal, non-
perturbative, generally intractable!)


• Discretize to make the integral finite-
dimensional so we can evaluate numerically


• Importance sampling and Monte Carlo 
numerical evaluation to give us an ensemble of 
field configurations with weight exp(-S)


• Main advantages: non-perturbative and broad 
(can investigate many observables on one 
weighted ensemble)

⇥O⇤ = 1

Z

Z
DUD�D� O(U,�,�) exp

�
�S[U,�,�]

�

�O⇥ = 1

N

X

U�U
�O⇥U
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Stability of composite dark matter candidates

• Lightest mesons (Π) can be stabilized by flavor 
symmetries* or G-parity**, but then one has to argue 
against the presence of dimension-5 operators like

*M. Buckley and EN, arXiv:1209.6054 
**Y. Bai and R. Hill, arXiv:1005.0008

1

⇤
 ̄ H†H instability over lifetime of the universe.

⇧ ⇠  ̄ B ⇠   ... ND constituents

• Accidental dark baryon number symmetry provides 
automatic stability for B on very long timescales (as long 
as ND > 2!)  E.g. for ND=4, decay through dimension-8(!)

1

⇤4
    H†H

(nice discussion here: arXiv:1503.08749)



Relic density I: asymmetric origin

• Basic mechanism recognized in original technicolor DM papers 
(Nussinov ’85, Barr, Chivukula and Farhi ‘90) 

• Electroweak sphaleron equilibrates primordial asymmetries in 
baryon, lepton, and dark baryon number:

nB � nB̄ ' nL � nL̄ ' nD � nD̄

• This condition would give us DM mass of O(GeV), but 
technibaryons are massive relative to Tsph, which exponentially 
depletes them; in early technicolor models, masses of O(TeV) give 
the correct abundance  

• The story seems more complicated for composite DM models 
with vector-like mass terms, and/or extra EW-charged states 
which can alter the sphaleron temperature…



Relic density II: thermal origin

• Basic picture: charged states interact 
strongly with SM thermal bath, so 
dark matter freeze-out is set by DM 
annihilation cross-section 

• If all states are PNGBs, then the 
resulting DM mass can be small (as in 
SU(2) example to the left). 

• For dark baryons, dimensional 
analysis or partial-wave unitarity give 
M~100 TeV (assuming 2->2); 
however, 2—>N processes might 
dominate at low temperatures…

N, N̄

⇧±

⇧0

SM⇧0⇧0 $ ⇧+⇧�

NN̄ $ ⇧+⇧�

NN̄ $ ⇧0⇧0

⇧± $ ff̄ 0

⇧+⇧� $ ff̄
⇧+⇧� $ ��

⇧0 $ ��
⇧0 $ ff̄

(M. Buckley and EN, arXiv:1209.6054)



2. Composite dark matter 
(b) Collider searches



Collider searches: SUSY DM vs. dark baryons

• The lightest neutral baryon (DM candidate) is not the 
lightest particle in the new sector!  Much harder to 
produce directly in colliders, so MET signals are greatly 
suppressed.  Search for light, charged mesons instead?
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Fermionic decay of mesons

• Mass flip in final state, due to decay of pseudoscalar bound state 
(same for QCD pions.) Gives preferred decay to heaviest SM states:

YETwo:
0¥⇒¥ne¥I

are many possible decay modes. For a general decay into
a Standard Model doublet (f f 0), assuming mf � mf 0 ,
the decay width is

�(⇧+ ! ff
0
) =

G2

F

4⇡
f2

⇧

m2

fm
⇧

c2

axial

 
1 � m2

f

m2

⇧

!
.(35)

If m
⇧

> mt + mb, the dominant decay mode is expected
to be ⇧+ ! tb, otherwise ⇧+ ! ⌧+⌫⌧ and ⇧+ ! s̄c,
with branching ratios of roughly 70% and 30% respec-
tively. Note that the decay width has several enhance-
ment factors relative to the QCD pion decay width

�(⇧+ ! ff
0
)

�(⇡ ! µ+⌫µ)
' c2

axial

|Vud|2
✓

f
⇧

f⇡

◆
2

✓
mf

mµ

◆
2

✓
m

⇧

m⇡

◆
(36)

where for simplicity we have neglected kinematic suppres-
sion. As an example, if f

⇧

' m
⇧

' v, we find the lightest
charged dark mesons decay faster than QCD charged pi-
ons so long as c

axial

>⇠ 10�8. This is easy to satisfy with
small Yukawa couplings and dark fermion masses at or
beyond the electroweak scale.

We can now make some comments about existing col-
lider constraints on non-singlet mesons. The lightest
charged mesons ⇧± can be pair produced in particle
colliders through the Drell-Yan process, and will decay
through annihilation of the constituent fermions into a
W boson. Because the Drell-Yan production is mediated
by a photon and the mesons have unit electric charge, the
production cross-section is substantial, leading to robust
bounds from LEP-II. For charged states near the LEP-II
energy threshold, the dominant decay mode is expected
to be ⇧+ ! ⌧+⌫⌧ as noted above. Reinterpreting the
LEP-II bound from the pair production of supersymmet-
ric partners to the tau (with the stau decaying into a tau
and a nearly massless gravitino), we find m

⇧

>⇠ 86.6 GeV
[59–63]. Stronger bounds from the LHC may be possible,
although existing searches do not yet give any significant
constraints on the charged mesons [20]; we briefly high-
light the signals in the discussion.

Using our lattice results from Ref. [30], we can trans-
late the experimental bound on the mass of the pseu-
doscalar meson into a bound on the baryon mass,
mB > 245, 265, 320 GeV when the ratio of the pseu-
doscalar mass to the vector meson mass is m

⇧

/mV =
0.77, 0.70, 0.55.

VI. CONTRIBUTIONS TO ELECTROWEAK
PRECISION OBSERVABLES

Stealth dark matter contains dark fermions that ac-
quire electroweak symmetry breaking contributions to
their masses. Consequently, there are contributions to
the electroweak precision observables of the Standard
Model, generally characterized by S and T [64, 65]. In
the custodial SU(2) limit, Eq. (25), the contribution to
T vanishes. There is a contribution to S, controllable

through the relative size of the electroweak breaking and
electroweak preserving masses of the dark fermions.

The S parameter is defined in terms of momentum
derivatives of current-current correlators [64, 65],

S ⌘ 16⇡⇧0
3Y (0) (37)

=
d

dq2


16⇡

3

✓
gµ⌫ � qµq⌫

q2

◆
Xµ⌫(q2)

�

q2
=0

Xµ⌫(q2) ⌘
Z

d4x e�iq·xhjµ
3

(x)j⌫
Y (0)i, (38)

where the currents jµ
3

(x) and j⌫
Y (x) for the stealth dark

matter model are defined in Eqs. (A7) and (A8). Af-
ter some algebra and identifications of symmetric con-
tractions, these definitions of the currents in terms of
4-component fermion fields lead to the current-current
correlator. In the custodial limit, we obtain

2hjµ
3
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where the connected contributions to the correlation
functions are given by

ijGµ⌫
AB ⌘ h ̄u

i �
µPA 

u
j  ̄

u
j �

⌫PB 
u
i i��

connected

. (40)

Here, A, B = L, R and the flavor indices i, j = 1, 2, where
it is understood that the flavors labeled 2 have larger
fermion masses than the flavors labeled 1. Since the u, d
flavors have the same mass, the u and d labels are inter-
changeable (i.e. everything is written in terms of the u
flavors).

We can obtain expressions for the mixing angle coe�-
cients. Like the case of light meson decay, if we consider
an approximately symmetric mass matrix, with Yukawa
couplings given by Eq. (28), all of the mixing angle coef-
ficients are approximately equal to each other, di↵ering
only at first order in ✏y, i.e.,
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4
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[1 + O(✏y) . . .]
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4
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(

1 Linear Case

y2v2/(2�2) Quadratic Case.
(41)

In the Linear Case, the mixing angles are approximately
equal c

1

' s
1

' c
2

' s
2

' 1/
p

2. In the Quadratic
Case, all of the contributions to the S parameter are
suppressed by (yv/�)2. To calculate the S parameter in
general requires lattice methods, paying close attention
to the heavy-light splitting of the fermions, M

2

�M
1

. To
a first approximation we expect that in the limit of small
mass splitting, M

2

� M
1

⌧ M ,

Gµ⌫
AB ⌘11 Gµ⌫

AB '22 Gµ⌫
AB '12 Gµ⌫

AB '21 Gµ⌫
AB . (42)
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• Robust bound from LEP stau searches, MΠ ≿ 90 GeV.  At LHC, top-
bottom resonance pair production may be a distinctive signature



Meson Decay Rates
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FIG. 1: Decay branching ratios of charged chiral quirkonia in di↵erent JPC states. Solid lines are with Higgs mass
MH = 125 GeV, dashed lines with MH = 250 GeV.

the widths are enhanced by the s-channel Higgs reso-
nance. This can be seen in Fig. 3. There, the WW and
ZZ widths have a resonance at M = MH = 250 GeV
when the s-channel Higgs boson is on-shell. The tt̄ width
does not exhibit this behavior because at 250 GeV, the
decay into two top quarks from a single Higgs boson is
kinematically forbidden.

5. 3P1

The branching ratios for the 3P1 state are shown in
Fig. 2e. The ZH channel are doubly enhanced and is
dominant for M & 700 GeV.

5

(Quirky) charged pion decay (Vector-like) neutral meson decay
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FIG. 4: Decay width ratios of neutral vector-like quirkonia in di↵erent JPC states. Solid lines correspond to a Higgs
mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no di↵erence
between the width ratios for di↵erent Higgs masses, and thus the solid lines overlap the invisible dashed lines.

Z, we assign P and C numbers according to the P and C
of the bilinears  ̄�µ and  ̄�µ�5 . The photon has JPC

= 1��, and the W/Z has 1�� for the vector coupling
and 1++ for the axial vector coupling (that is, we absorb
the violation of C and P from the axial vector coupling
into the JPC of the W and Z). For the quirkonia, we
have 0�+ for 1S0, 1�� for 3S1, 1+� for 1P1, 0++ for 3P0,
1++ for 3P1 and finally, 2++ for 3P2.

Next, we write down all the available JPC with di↵er-

ent orbital angular momentum L between the two final
state particles, and match with the JPC of the quirky
meson to determine which meson decay channels are en-
hanced. As an example, consider Q̄Q ! Z�, where
there are only the t- and u-channel diagrams. Single
enhancement from the longitudinal Z is present in some
meson states. In the limit where the quirkonium mass
M � MZ , the longitudinal Z is equivalent to the corre-
sponding Goldstone boson �0. The JPC of the �0� sys-
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(slide from G. Kribs)

• Diboson decays generally occur too (may or may not be 
anomalous, depending on charge assignments) 

• Whether diboson or fermionic decay modes dominate is 
likely model-dependent…

Meson Decay Rates
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FIG. 1: Decay branching ratios of charged chiral quirkonia in di↵erent JPC states. Solid lines are with Higgs mass
MH = 125 GeV, dashed lines with MH = 250 GeV.

the widths are enhanced by the s-channel Higgs reso-
nance. This can be seen in Fig. 3. There, the WW and
ZZ widths have a resonance at M = MH = 250 GeV
when the s-channel Higgs boson is on-shell. The tt̄ width
does not exhibit this behavior because at 250 GeV, the
decay into two top quarks from a single Higgs boson is
kinematically forbidden.

5. 3P1

The branching ratios for the 3P1 state are shown in
Fig. 2e. The ZH channel are doubly enhanced and is
dominant for M & 700 GeV.

5

(Quirky) charged pion decay (Vector-like) neutral meson decay
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FIG. 4: Decay width ratios of neutral vector-like quirkonia in di↵erent JPC states. Solid lines correspond to a Higgs
mass MH = 125 GeV, while dashed lines correspond to MH = 250 GeV. In many instances, there is no di↵erence
between the width ratios for di↵erent Higgs masses, and thus the solid lines overlap the invisible dashed lines.

Z, we assign P and C numbers according to the P and C
of the bilinears  ̄�µ and  ̄�µ�5 . The photon has JPC

= 1��, and the W/Z has 1�� for the vector coupling
and 1++ for the axial vector coupling (that is, we absorb
the violation of C and P from the axial vector coupling
into the JPC of the W and Z). For the quirkonia, we
have 0�+ for 1S0, 1�� for 3S1, 1+� for 1P1, 0++ for 3P0,
1++ for 3P1 and finally, 2++ for 3P2.

Next, we write down all the available JPC with di↵er-

ent orbital angular momentum L between the two final
state particles, and match with the JPC of the quirky
meson to determine which meson decay channels are en-
hanced. As an example, consider Q̄Q ! Z�, where
there are only the t- and u-channel diagrams. Single
enhancement from the longitudinal Z is present in some
meson states. In the limit where the quirkonium mass
M � MZ , the longitudinal Z is equivalent to the corre-
sponding Goldstone boson �0. The JPC of the �0� sys-
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2. Composite dark matter 
(c) Direct detection



Direct detection of composite DM

probably not

suppressed relative to γ

interesting…*

*Gluonic operators considered before in Bagnasco, Dine, Thomas PLB 320 (1994) 
99-104.  Similar to photon operators, but stronger bounds…could use an update! 

See also Godbole, Mendiratta, Tait (arXiv:1506.01408) for a simplified model.

focus on these

focus on these



Direct detection: Higgs exchange
• If the dark-sector fermions couple to Higgs, then they will 

induce a dark baryon-Higgs coupling (sigma terms!)

•

¥E¥¥B
an

¥h€¥
pm

hp, n|mq q̄q|p, ni = mp,nf
pn
q

hB|mf f̄f |Bi = mBf
B
f

• Calculate on the lattice with 
Feynman-Hellman:

fB
f =

mf
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FIG. 11. Calculation of @mB/@mf from baryon spectrum.
Plots of amS0 vs. amf are displayed for the coarsest lat-
tice spacing (top), intermediate lattice spacing (middle), and
finest lattice spacing (bottom). As seen in lattice QCD cal-
culations, the fermion mass dependence of the baryon mass is
primarily linear.

tice spacing will allow a more complete extraction of the
derivative. However, due to the linear nature of the data,
the derivative can be estimated as linear. For each beta
value, the derivative is given by

@mB

@mf
= 5.83(30) For � = 11.026

@mB

@mf
= 6.55(90) For � = 11.5

@mB

@mf
= 4.92(30) For � = 12.0. (29)

 mPS
mV

mf

mB

@mB
@mf

0.1475 0.891(9) 0.413(25)

0.1480 0.859(13) 0.353(22)

0.1486 0.826(15) 0.277(17)

0.1491 0.716(24) 0.193(12)

0.1495 0.584(33) 0.118(8)

0.1496 0.568(38) 0.091(6)

TABLE VII. Normalized sigma parameter results for � = 12.0
on 323 ⇥ 64 lattices.

It is worth mentioning that at this stage, there is an over-
all normalization of mf that is left undetermined. How-
ever, ultimately we are going to multiply this derivative
by mf/mB , canceling this normalization. One curiosity
is that the � = 12.0 result is below those of the coarser
lattice spacings. We will argue in subsequent sections
that the � = 12.0 results are significantly more sensitive
to lattice artifacts (in particular, volume e↵ects) than the
other two lattice spacings.

Comparisons between the coarse and intermediate lat-
tice spacing can be made for mPS/mV ⇡ 0.69 and
mPS/mV ⇡ 0.77 from Table I and Table VI. As ex-
pected, the results are constant within errors. This helps
strengthen the conclusion that lattice artifact systematics
for these masses for these lattice spacings on the 323⇥64
lattices are smaller than the statistical errors.

X. ESTIMATION OF LATTICE ARTIFACTS

As in any calculation in lattice field theory, there are
several sets of unphysical lattice artifacts that need to
be quantified. Since chiral extrapolations to low masses
are not strictly necessary for the applications to compos-
ite dark matter theory, the two primary unphysical con-
tributions are the discretization e↵ects in terms of our
lattice spacing, a, and finite volume “wrap-around” ef-
fects, where the lattice extent is given by number of sites
times the lattice spacing. One systematic error that will
remain uncontrolled in this work is the use of quenched
lattices, which corresponds to unphysically dropping dy-
namical sea fermion loops. This approximation works
better as one goes to larger fermion masses and larger
number of colors, which is the regime we are currently in.
For the QCD calculation of the light quark sigma term,
the quenched results are entirely consistent with state-
of-the-art dynamical simulations (see Fig. 3 in Ref. [83]).
The statistical errors are less than 10% (the largest pos-
sible systematic error), and, again, we would expect our
systematic errors to be smaller than this due to a larger
number of colors and heavier fermions. With that be-
ing said, we hope to produce several unquenched SU(4)
ensembles in the future, to more directly quantify this
e↵ect.

[LSD Collab, Phys. Rev. D 89, 094508 (2014)]



Experimental constraints on Higgs exchange

• Coupling on DM side is model-dependent.  How much 
DM mass can come from Higgs?

mf (h) = m+
yhp
2

↵ ⌘ v

mf

@mf (h)

@h

����
h=v

=
yvp

2m+ yv
 1

• α=0 for no Higgs coupling, α=1 
is pure Higgs mass generation. 

• Non-perturbative calculation of 
scalar matrix element (sigma 
term) on DM side needed 

• α=1 ruled out by experiment in 
this SU(4) theory!
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Higgs exchange cross 
section in Stealth DM

• Need to non-perturbatively 
evaluate the σ-term of the dark 
baryon (scalar nuclear form 
factor) 

• Effective Higgs coupling non-
trivial with mixed chiral and 
vector-like masses 

• Model-dependent answer for the 
cross-section in this channels 

• A non-negligible vector mass is 
needed to evade direct 
detection bounds

mf (h) = m+
yhp
2

↵ ⌘ v

mf

@mf (h)

@ h

����
h=v

=
yvp

2m+ yv
 1

[LSD collab., Phys. Rev. D89 (2014) 094508]

[LSD Collab, Phys. Rev. D 89, 094508 (2014)]



Experimental constraints on Higgs exchange (II)

• Results above are for a 
particular theory, relying on 
the scalar matrix element:

[T. DeGrand, Y. Liu, EN, B. Svetitsky, Y. Shamir, Phys. Rev. D 91, 114502 (2015)]

fB
f =

mf

MB

@MB

@mf

• Lattice results hint that this 
matrix element may be fairly 
universal for different theories 
in similar mass regimes (right) 

• Statement that composite DM 
can’t have mass generation 
purely from the Higgs 
mechanism may be very 
general!

SU(3) (quenched)
SU(5) (quenched)
SU(7) (quenched)

SU(3)
X SU(4) AS2

SU(4) (quenched)



Photon effective interactions

• Can also work with effective photon-DM interactions:

Dimension 5: magnetic moment

Dimension 6: charge radius

Dimension 7: polarizability

1

⇤D
�̄�µ⌫�Fµ⌫

1

⇤2
D

�̄vµ@⌫�F
µ⌫

1

⇤3
D

�̄�Fµ⌫F
µ⌫

• Note that these all interact very differently with different 
nuclear targets compared to Higgs exchange!

• Interaction of composite DM with photon can also be written as a 
momentum-dependent matrix element:

hB(p0)|jµV |B(p)i ⇠ F (Q2)

[Bagnasco, Dine and Thomas, PLB 320 (1994); Pospelov and ter Veldhuis, PLB 480 (2000)]



Direct detection via leading EM operators

• Results using lattice for 
simple SU(3) “neutron-
like” DM model 

• Constraints from the 
leading interactions are 
quite strong - mass > 
10 TeV from mag 
moment (even from 
XENON100!) 

• Lattice calculation of 
form factors was crucial 
input for these plots 

5

sult is hr2
E,neut

i ⇡ �(0.009 . . . 0.025) fm2, substantially
less than the observed result. Previous calculations of nu-
cleon structure with N

f

= 2 Wilson fermions [24] yielded
similar values hr2

E,neuti = �(0.011 . . . 0.023) fm2. These
results, too, employed relatively heavy underlying quarks.
In our case, further studies with smaller fermion mass can
shed light on the range of direct detection allowed values
for the mean square charge radius.
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FIG. 4: Calculated XENON100 event rates based on energy cuts
and acceptance rates from Ref. [25] (solid lines). For comparison,
we also show scattering rates using only the charge radius term,
which is suppressed by two additional powers of M

�

(dashed
lines). The experimental upper bound on event rates, based on
accumulated 2323.7 kg·days of exposure [25] are shown with the
dotted lines.

Direct detection exclusion plots We next compare our
calculations of dark-matter parameters with the current
experimental bounds on the dark-matter-nucleus cross-
sections in direct detection experiments. Currently, the
most stringent bound is provided by the XENON100 ex-
periment [25], in which hypothetical dark-matter particles
are detected through their collisions with xenon nuclei with
Z = 54 and A = 124 . . . 136, and which has accumulated
2323.7 kg·days of effective exposure. Two of the isotopes,
129Xe and 131Xe, have non-zero spin and are sensitive to
the spin-dependent M1 interaction. Their combined abun-
dance constitutes approximately 1/2 in natural xenon [26].

In this section, we adopt a more conventional notation
M

�

for the mass of the dark-matter particle, and also de-
note its radius and magnetic moment with a subscript “�”.
Figs. 2 and 3 show that the anomalous moment and
mean square charge radius vary little with the amount of
the dark-matter mass coming from the underlying fermion
mass (and also vary little as N

f

is increased from 2 to 6).
The differential cross-section of a dark-matter fermion

and a nucleus, to leading order in the non-relativistic dark-

matter velocity v ⌧ 1 is

d�

dE
R

=

|MSI|2 + |MSD|2
16⇡(M

�

+ M
T

)

2Emax
R

, (21)

where M
T

is the mass of the target nucleus, and Emax
R

=

2M2
�MT v

2

(M�+MT )2
is the maximal recoil energy for given colli-

sion velocity v. The quantities and |MSI,SD|2 are spin-
(in)dependent amplitudes squared, averaged over initial
and summed over final states:

|MSI|2 = e4
⇥
ZF

c

(Q)

⇤2 ⇣M
T

M
�

⌘2h
4

9

M4
�

hr2
E�

i2

+

⇣
1 +

M
�

M
T

⌘2

2
�

cot

2 ✓CM

2

i
,

(22)

|MSD|2 = e4
2

3

⇣J + 1

J

⌘ h⇣
A

µ
T

µ
n

⌘
F

s

(Q)

i2
2
�

. (23)

Here, Z and A are the charge and atomic numbers of
a specific xenon isotope, (µ

T

/µ
n

) is the nucleus magnetic
moment expressed in Bohr magnetons µ

n

=

e

2mn
, F

c,s

(Q)

are its nuclear charge and spin form factors, respectively, at
the momentum transfer Q ⇡ p

Q2
=

p
2M

T

E
R

, and ✓CM
is the scattering angle in the center-of-mass frame [35]. For
non-relativistic velocities, cot

2 ✓CM
2

=

⇣
E

max
R

ER
� 1

⌘
.

For the nuclear form factors F
c,s

(Q2
), we use the fol-

lowing phenomenological expressions [17, 27]:

|F
c

(Q)|2 = 9

����
sin(QR

c

) � (QR
c

) cos(QR
c

)

(QR
c

)

3

����
2

e�(QS)2 ,

(24)

|F
s

(Q)|2 =

(
0.047 , 2.55  QR

s

 4.5 ,��� sin(QRs)
QRs

���
2

, otherwise ,
(25)

where R
c

= 1.14A1/3 fm, R
s

= 1.00A1/3 fm, and S =

0.9 fm.
Following Refs. [17, 25], we compute the scattering rate

for a range of dark-matter particle masses with the recoil
energies E

R

= 6.6 . . . 43.3 keV:

R =

Mdetector

M
T

⇢DM

M
�

Z
Emax

Emin

dE
R

Acc(E
R

)

D
v0 d�

dE
R

E

f

,

(26)
where h·i

f

denotes averaging over the DM velocity distri-
bution (27), v0

= |~v � ~vEarth| is the dark-matter velocity
with respect to the detector (the Earth), and Acc(E

R

) is
the recoil energy-dependent acceptance rate of the detec-
tor [25]. We assume the thermal distribution of velocities
in the galactic dark-matter halo [27],

d3n

d~v3
= f(~v) =

1

⇡3/2v3
0

e�~v

2
/v

2
0 ,

Z

|~v|<vesc

d3~v f(~v) ⌘ 1 ,

(27)
with v0 = vEarth = 220 km/s, vesc = 544 km/s, and the
dark-matter mass density ⇢DM = 0.3 GeV/cm3. Finally,

(LSD Collaboration, 1301.1693) magnetic moment

charge radius

(lattice results in another model: A. Hietanen, R. Lewis, C. Pica and F. Sannino, arXiv:1308.4130)



Photon effective interactions and symmetry

• No magnetic moment if spin-zero - requires even ND. 

• Charge radius vanishes if we identify a Z2 symmetry 
under which the photon field is odd:

� ! �

Aµ ! �Aµ

1

⇤2
D

�̄vµ@⌫�F
µ⌫ zero if

• Simplest example is SU(2) gauge theory with two 
fermions U,D carrying Q=±1/2 (“quirky DM”: 0909.2034)

� ⇠ UD symmetry is exchange of U,D labels
QU = �QD = 1/2



3. A case study: stealth dark matter

(…meticulously constructed, 
incredibly complicated, can 
completely fail to work if one 

screw is loose?)



Starting with symmetries

• Start with SU(ND) gauge theory and NF Dirac fermions, in the 
fundamental rep, and impose some conditions. 

• First requirement: baryons are bosons, no mag. moment. - 
even ND.  ND>=4 gives automatic DM stability from Planck-
scale violations! 

• Second requirement: couplings to electroweak and Higgs - 
one EW doublet and one singlet, NF>=3.  Ensures meson 
decay as well. 

• Third requirement: custodial SU(2) for electroweak precision - 
NF=4.  As a bonus, charge radius is eliminated —> stealth DM!



Field content and mass terms
• Field content of the model 

shown to the left 

• Two sources of mass generation 
allowed: EW-breaking (Higgs 
mechanism) and EW-preserving 
(vector-like) 

• With most general masses and 
EW symmetry breaking, we have 
U(4)xU(4) broken to a single U(1) 
[dark baryon number]. 

• Insist on SU(2) custodial:  
(u <-> d) symmetry.

Field SU(ND) (SU(2)L, Y ) Q

F1 =

 
Fu
1

F d
1

!
N (2, 0)

 
+1/2

�1/2

!

F2 =

 
Fu
2

F d
2

!
N (2, 0)

 
+1/2

�1/2

!

Fu
3 N (1,+1/2) +1/2

F d
3 N (1,�1/2) �1/2

Fu
4 N (1,+1/2) +1/2

F d
4 N (1,�1/2) �1/2

TABLE I. Dark fermion particle content of the stealth dark
matter model. All fields are two-component (Weyl) spinors.
SU(2)L refers to the Standard Model electroweak gauge
group, and Y is the hypercharge. In the broken phase of
the electroweak theory, the dark fermions have the electric
charge Q = T3 + Y as shown.

tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(ND) with electric
charges of Q ⌘ T

3,L + Y = ±1/2. We use the notation
where the superscript u or d (as in Fu, F d and later  u,
 d,  u,  d) denotes a fermion with electric charge of
Q = 1/2 or Q = �1/2 respectively.

The fermion kinetic terms in the Lagrangian are given
by

L �
X

i=1,2

iF †
i �̄

µDi,µFi +
X

i=3,4;j=u,d

iF j
i

†
�̄µDj

i,µF j
i , (1)

where the covariant derivatives are

D
1,µ ⌘ @µ � igW a

µ�
a/2 � igDGb

µtb (2)

D
2,µ ⌘ @µ � igW a

µ�
a/2 + igDGb

µtb
⇤

(3)

Dj
3,µ ⌘ @µ � ig0Y jBµ � igDGb

µtb (4)

Dj
4,µ ⌘ @µ � ig0Y jBµ + igDGb

µtb
⇤

(5)

with the interactions among the electroweak group and
the new SU(ND). Here Y u = 1/2, Y d = �1/2 and tb

are the representation matrices for the fundamental of
SU(ND).

The vector-like mass terms allowed by the gauge sym-
metries are

L � M
12

✏ijF
i
1

F j
2

� Mu
34

Fu
3

F d
4

+ Md
34

F d
3

Fu
4

+ h.c., (6)

where ✏
12

⌘ ✏ud = �1 = �✏12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M

12

explicitly breaks an
[SU(2) ⇥ U(1)]2 global symmetry down to the diagonal
SU(2)

diag

⇥ U(1) where the SU(2)
diag

is identified with

SU(2)L. The mass terms Mu,d
34

explicitly break the re-
maining [SU(2)⇥U(1)]2 down to U(1)⇥U(1) where one
of the U(1)’s is identified with U(1)Y . (In the special case

when Mu
34

= Md
34

, the global symmetry is enhanced to
SU(2)⇥U(1), where the global SU(2) acts as a custodial
symmetry.) Thus, after weakly gauging the electroweak
symmetry and writing arbitrary vector-like mass terms,
the unbroken flavor symmetry is U(1) ⇥ U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2, +1/2) representation. They are given by

L � yu
14

✏ijF
i
1

HjF d
4

+ yd
14

F
1

· H†Fu
4

� yd
23

✏ijF
i
2

HjF d
3

� yu
23

F
2

· H†Fu
3

+ h.c. , (7)

where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =
(0 v/

p
2)T , with v ' 246 GeV. Replacing the Higgs

field by its VEV in Eq. (7), we obtain mass terms for the
fermions, in 2-component notation,

L � �(Fu
1

Fu
3

)Mu

 
F d

2

F d
4

!
� (F d

1

F d
3

)Md

 
Fu

2

Fu
4

!

+ h.c. , (8)

with the mass matrices given by

Mu ⌘
 

M
12

yu
14

v/
p

2
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23

v/
p

2 Mu
34

!
(9)

Md ⌘ �
 

M
12

yd
14

v/
p

2

yd
23

v/
p

2 Md
34

!
. (10)

These Yukawa couplings break the remaining U(1) ⇥
U(1) flavor symmetry to U(1)D dark baryon number.
The mass matrices Mu and Md correspond to the masses
of two sets of fermions with electric charge Q = +1/2
and Q = �1/2 respectively, in the fundamental repre-
sentation of SU(ND). The two biunitary mass matrices
can be diagonalized by four independent rotation angles
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TABLE I. Dark fermion particle content of the stealth dark
matter model. All fields are two-component (Weyl) spinors.
SU(2)L refers to the Standard Model electroweak gauge
group, and Y is the hypercharge. In the broken phase of
the electroweak theory, the dark fermions have the electric
charge Q = T3 + Y as shown.

tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(ND) with electric
charges of Q ⌘ T

3,L + Y = ±1/2. We use the notation
where the superscript u or d (as in Fu, F d and later  u,
 d,  u,  d) denotes a fermion with electric charge of
Q = 1/2 or Q = �1/2 respectively.

The fermion kinetic terms in the Lagrangian are given
by
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with the interactions among the electroweak group and
the new SU(ND). Here Y u = 1/2, Y d = �1/2 and tb

are the representation matrices for the fundamental of
SU(ND).
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TABLE I. Dark fermion particle content of the stealth dark
matter model. All fields are two-component (Weyl) spinors.
SU(2)L refers to the Standard Model electroweak gauge
group, and Y is the hypercharge. In the broken phase of
the electroweak theory, the dark fermions have the electric
charge Q = T3 + Y as shown.
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and Q = �1/2 respectively, in the fundamental repre-
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EW-preserving mass:

EW-breaking mass:



Re-diagonalizing in the mass eigenbasis

• Two sources of mass, electroweak breaking and preserving. 
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2
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2

±
p
�2 + y14y23v2/2

where the extra phase in Eqs. (16),(17) ensures the Q =
�1/2 fermions will have positive mass eigenvalues.

The Lagrangian for the fermion mass eigenstates be-
comes

L � �
2X

i=1

�
Mu
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u
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d
i + Md

i �
d
i�

u
i + h.c.

�
(18)

where the mass eigenvalues are Mu
1,2 for Q = 1/2, and the

distinction between fermions  and � allows us to write
the Q = �1/2 fermion masses as Md

1,2. The Dirac spinor
mass eigenstates are constructed from the 2-component
Weyl spinor mass eigenstates in the usual way,
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giving the Dirac fermion masses

L � �
2X

i=1

⇣
Mu

i  
u
i  

u
i + Md

i  
d
i 

d
i

⌘
. (21)

The fermion masses themselves are obtained from a
straightforward diagonalization of the mass matrices,
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with mixing angles
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with identical expressions for Md
1,2 and tan 2✓d

1,2 with the
replacement u $ d everywhere.

It is important to note that the electroweak currents
(jµ

+

, jµ
�, jµ

3

, jµ
Y ) play an important role in the upcom-

ing phenomenological discussions. Due to the extended
expressions for these quantities in terms of our Dirac
spinors, we have relegated a detailed derivation of the
electroweak currents to Appendix A.

IV. SIMPLIFICATIONS

Our main interest is the more specialized case where
the lightest Q = +1/2 and Q = �1/2 fermions are degen-
erate in mass to a very good approximation. This leads
to a neutral scalar baryon with a vanishing charge radius.
While there are several ways this could be accomplished,
we can simply impose a custodial SU(2) global symme-
try on the Lagrangian. In order to simplify notation, we
define cj

i ⌘ cos ✓j
i , sj

i ⌘ sin ✓j
i and PL,R = (1 ⌥ �

5

)/2.
In the custodial SU(2) symmetric theory, cu

i = cd
i and

su
i = sd

i .

A. Custodial SU(2)

An exact custodial SU(2) symmetry implies the masses
and interactions are symmetric with respect to the inter-
change u $ d. This means the Lagrangian parameters
satisfy
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= yd
14
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14

, yu
23

= yd
23
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23

, (25)
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34
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.

Defining the overall vector-like mass scale M and di↵er-
ence � to be 4

M ⌘ M
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34

2
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M
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� M
34

2

���� , (26)

the dark fermion mass eigenvalues are

M
1,2 = M ⌥

r
�2 +

y
14

y
23

v2

2
. (27)

No u or d labels are necessary, since custodial SU(2)
symmetry implies that there is one pair of Dirac fermions
with electric charge Q = (+1/2, �1/2) with mass M

1

(the
lightest pair), as well as a second pair of Dirac fermions
with electric charge Q = (+1/2, �1/2) with mass M

2

(the heavier pair). The spectrum is illustrated in Fig. 1.
In the limit y

14

, y
23

! 0, the fermions acquire
purely vector-like masses, and thus the chiral conden-
sate of the dark force is aligned to a purely electroweak-
preserving direction. In order that the chiral conden-
sate’s electroweak-preserving orientation is not signifi-
cantly disrupted, we consider small electroweak breaking
masses, y

14

v, y
23

v ⌧ M .
This leaves two distinct regimes for the spectrum, de-

pending on the relative sizes of
p

y
14

y
23

v and �.

B. Approximately symmetric mass matrices

A second simplification, useful to analytically and nu-
merically evaluate our results, is to take y

14

' y
23

. The
mass matrices Eqs. (9,10) are approximately symmetric.
Specifically, we can write

y
14

= y + ✏y , y
23

= y � ✏y , |✏y| ⌧ |y| . (28)

and expand in powers of ✏y. For example, the dark
fermion masses become simply

M
1,2 = M ⌥

r
�2 +

y2v2

2
. (29)

to leading order in O(✏y).
The distinct regimes are thus yv � � and yv ⌧ �.

In the Linear Case, electroweak symmetry breaking is

4 We assume � < M , such that fermion masses remain positive,
to avoid further fermion field rephasings.
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• Assume yv<<M, to avoid vacuum alignment issues w/EWSB.  Then 
two regimes arise, depending on the origin of the mass splitting:

Linear Case:

Quadratic Case: yv ⌧ �

yv � �

y =
yp
2

y =
y2v

2�
(linear/quadratic effect observed before, see Hill and Solon 1401.3339)



Electroweak precision
• No T parameter by construction (custodial symm), but S 

parameter is an important constraint!  Two asymptotic forms of 
S contribution:
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only, are in excellent agreement with the SM values of zero. Fixing U = 0 (as is also done
in Fig. 10.6) moves S and T slightly upwards,

S = 0.00 ± 0.08,

T = 0.05 ± 0.07. (10.71)

Again, good agreement with the SM is observed. If only any one of the three parameters
is allowed, then this parameter would deviate at the 1.5 to 1.7 σ level, reflecting the
deviation in MW . Using Eq. (10.66), the value of ρ0 corresponding to T in Eq. (10.70) is
1.0000 ± 0.0009, while the one corresponding to Eq. (10.71) is 1.0004 ± 0.0005.

There is a strong correlation (90%) between the S and T parameters. The U parameter
is −59% (−81%) anti-correlated with S (T ). The allowed regions in S–T are shown in
Fig. 10.6. From Eqs. (10.70) one obtains S ≤ 0.14 and T ≤ 0.20 at 95% CL, where the
former puts the constraint MKK ! 3.5 TeV on the masses of KK gauge bosons in warped
extra dimensions.
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Figure 10.6: 1 σ constraints (39.35%) on S and T (for U = 0) from various inputs
combined with MZ . S and T represent the contributions of new physics only. Data
sets not involving MW or ΓW are insensitive to U . With the exception of the fit to
all data, we fix αs = 0.1185. The black dot indicates the Standard Model values
S = T = 0.

The S parameter can also be used to constrain the number of fermion families, under
the assumption that there are no new contributions to T or U and therefore that any
new families are degenerate; then an extra generation of SM fermions is excluded at
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2.2 Electroweak precision constraints

The electroweak precision observables S and T [14] provide a significant
constraint on any model of BSM physics which couples to the electroweak
sector. Our stealth dark matter model incorporates a custodial SU(2) sym-
metry, under which the T -parameter vanishes. However, S can still provide
an important constraint. In general, S is defined as

S ⌘ 16⇡⇧0
3Y (0), (1)

where⇧
3Y (q2) is the transverse-projected correlator between the electroweak

T

3

and hypercharge currents. In stealth dark matter the electroweak charge
assignments are vector-like, so that the current correlator depends in general
on both left- and right-handed currents, as well as on mass mixing angles.
The full expression is given in [10].

There are two interesting limits to consider in which the contribution to
S is simplified. One is the limit where the splitting between the two fermion
doublets is large, M

2

� M

1

� M , where M is the average of M

1

and M

2

.
Neglecting the heavier fermion doublet, we find the expression

⇧
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where y is the Yukawa coupling to  
1

, v is the usual Higgs VEV, and � is
an input mass splitting parameter. On the other hand, in the limit of small
M
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� M

1

we have

⇧
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✏

2

yv
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4M

2
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16M
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⇧V V (q2) �⇧AA(q2)

�
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In both limits, knowledge of the strongly-coupled current correlators allows
us to translate directly into limits on the Yukawa couplings to the stealth
sector, once the other mass scales are specified.

2.3 Collider production of dark mesons

Although we are not working at light enough masses for the “dark pions”
to behave as PNGBs, as two-fermion bound states they remain relatively
light compared to the four-fermion baryons. Collider searches for the ⇧±,0

states can thus give a direct bound on stealth dark matter at even heavier
masses than those available to the collider; as shown in Fig. 1, LEP gives
a lower bound for the given parameters of around 300 GeV for the dark
matter mass.
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6

M2 � M1

M1 ⇡ M2

• Calculation of strong-
coupling part yields 
direct bounds on Yukawa 
couplings (important for 
asymmetric relic density)



Stealth Dark Matter on the lattice

• Why use lattice for this?  We’re not looking for precision, but 
controllable and improvable systematics! 

• From LEP bound, we favor regime with heavier fermion 
masses near the confinement scale - ideally suited to lattice 
(no large scale separation to fit inside “the box”.) 

• Specialize to ND=4 - smallest group with the properties we 
want.  (LEP bound also gets worse at large ND as the baryon 
is made of more fermions!) 

• Already showed one result from this series of calculations 
(nucleon sigma-term for Higgs-exchange direct detection)



Lattice simulation details

• Simplest approach to start: unimproved Wilson fermions, plaquette action 

• All results so far are quenched (no fermion loops.)  Studying heavy fermions 
and larger Nc, so should result in smaller errors than quenching QCD, which 
were typically O(10%). 

• Implemented using the Chroma code base - merged back into public repositoryCode Tests: Plaqutte
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Spectrum

• Spectrum scaling with 
input mass shown right. 

• Verifies that spin-0 is 
lightest here; ratio of Π to 
baryon mass fixes LEP 
bound   

• Study of splitting masses 
in the future…is there a 
corner of the space 
where the spin-1 baryon 
is lightest?

6

 amPS amV aMS0 aMS1 aMS2

0.1475 0.280(1) 0.310(3) 0.660(6) 0.672(5) 0.692(6)
0.1480 0.247(2) 0.288(3) 0.607(7) 0.623(7) 0.648(7)
0.1486 0.204(2) 0.248(6) 0.538(7) 0.543(8) 0.569(11)
0.1491 0.159(4) 0.223(5) 0.481(10) 0.498(10) 0.528(11)
0.1495 0.114(5) 0.195(9) 0.421(15) 0.443(12) 0.495(12)
0.1496 0.109(5) 0.192(9) 0.413(18) 0.434(12) 0.495(12)

TABLE IV. Spectrum results for � = 12.0 on 323 ⇥ 64 lattices.
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FIG. 5. Lattice spectrum results for the coarse lattice spacing
(� = 11.5) on 323⇥64 lattices for three input quark masses. (top)
Masses in lattice units of the pseudoscalar meson (red), vector
meson (orange), spin-0 baryon (brown), spin-1 baryon (blue), and
spin-2 baryon (black) vs. the meson mass ratio (pseudoscalar
over vector). (bottom) Masses in units of the spin-0 baryon mass
for the spin-0 baryon mass (brown), spin-1 baryon mass (blue),
and spin-2 baryon mass (black) vs. the meson mass ratio. Vertical
error bars of spin-0 baryon mass represent the error on the scale
setting for the dark matter mass.

senting the results as a function the meson mass ratio gives
an optimal sense on the relative magnitude of the fermion
mass. In the heavy quark limit, this ratio approaches 1 and
in the chiral limit, this ratio approaches 0 (for reference,
this value is QCD is mPS/mV ⇡ 0.18). On the second
plot in Fig. 4, the baryon masses are given in units of the
MS0 mass, which sets the scale of our dark matter mass in
exclusion plots. The ratio MS0/MS0 is trivially 1, but the
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FIG. 6. Lattice spectrum results for the fine lattice spacing (� =
12.0) on 323⇥64 lattices for six input quark masses. (top) Masses
in lattice units of the pseudoscalar meson (red), vector meson
(orange), spin-0 baryon (brown), spin-1 baryon (blue), and spin-
2 baryon (black) vs. the meson mass ratio (pseudoscalar over
vector). (bottom) Masses in units of the spin-0 baryon mass for
the spin-0 baryon mass (brown), spin-1 baryon mass (blue), and
spin-2 baryon mass (black) vs. the meson mass ratio. Vertical
error bars of spin-0 baryon mass represent the error on the scale
setting for the dark matter mass.

associated errors here correspond to the error on the scale
setting. For these coarse lattice spacing results, the scale
setting error will no more than 1.7%. It is clear (from this
plot in particular) that the relative separation is growing as
the pseudoscalar meson mass is decreased. This is to be
expected, as all three baryon states should have equal mass
in the heavy fermion mass limit (four times the fermion
mass), and are thus expected to separate as mass is de-
creased. What is not as predictable a priori is the relative
separation of the states. In particular, the spin-1 baryon
mass hugs much closer to the spin-0 mass than the spin-
2 state does either of the other states (i.e. the spin-2 state
separation grows faster with decreasing quark mass). The
implications of this and large Nc baryons will be discussed
more in the comparison of three and four colors. While vol-
ume effects on these lattices are under control, finite lattice
spacing effects will need to be quantified.
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Higgs exchange cross 
section in Stealth DM

• Need to non-perturbatively 
evaluate the σ-term of the dark 
baryon (scalar nuclear form 
factor) 

• Effective Higgs coupling non-
trivial with mixed chiral and 
vector-like masses 

• Model-dependent answer for the 
cross-section in this channels 

• A non-negligible vector mass is 
needed to evade direct 
detection bounds

mf (h) = m+
yhp
2

↵ ⌘ v

mf

@mf (h)

@ h

����
h=v

=
yvp

2m+ yv
 1

[LSD collab., Phys. Rev. D89 (2014) 094508]



Direct detection via polarizability

� �

Nucleus Nucleus

p p0

k k0

` `� q

k + `

q = k0 � k = p� p0

4

ND mPS/mV m̃B ↵ ˜CF ↵2
˜C0
F µ̃B µ̃0

B �2/dof
4 0.77 0.98204(93) 0.1420(56) -0.089(29) — — 0.7/3

0.70 0.88805(113) 0.1514(106) -0.142(68) — — 4.8/3
3 0.77 0.69812(51) 0.2829(127) -0.177(45) -6.87(26) 714(103) 3.0/7

0.70 0.61904(59) 0.2829(81) -0.165(24) -5.55(18) 396(78) 13.4/7

TABLE I. Results for the polarizabilities and magnetic moments
of the baryonic composites of a strongly-coupled SU(ND) theory,
in lattice units.

Constructing the dimensionless product ↵

˜

CF m̃

3

B (as
needed for the DM cross section), we find that the SU(4)
polarizabilities are larger than SU(3) by about 50%. Thus,
we find the SU(3) and SU(4) polarizabilities to be compa-
rable when normalized to the baryon mass. Of course, the
baryon mass itself scales proportional to ND; if we were
to set the scale using a quantity such as the string tension
which does not scale with ND, then the SU(3) polarizabil-
ity would be larger.

The effect of the quenched approximation, in which dy-
namical fermion loops are omitted from the lattice calcu-
lation, is not straightforward to estimate. However, the ef-
fects of such loops are expected to be suppressed with large
ND and heavy fermion mass; we note that even for QCD
with its much lighter fermions, the effects of quenching are
generally at most of order 10% [37].

Our calculations are performed at a single lattice spac-
ing and volume, both of which can lead to additional
systematic effects. We expect all of these corrections to
be small relative to the order of magnitude uncertainty
taken for the nuclear matrix element M

A
F . As a cross-

check, we note that the neutron polarizability from the
PDG [38] gives CF m

3

n ' 0.36 at the QCD physical ra-
tio mPS/mV = 0.18, while our SU(3) lattice simulations
give CF m

3

B ' 0.84 at mPS/mV = 0.70. These results
are broadly consistent with the expected scaling of the po-
larizability and baryon mass with mPS .

Direct detection cross sections – To relate the dimen-
sionless lattice results to the dimensionful DM mass, mB ,
that we vary continuously in order to scan the parameter
space of the theory, it is most convenient to give units to
the lattice spacing a = m̃B/mB . Along with Eq. (8), this
leads to the physical value of the polarizability

CF = 4⇡↵

✓
m̃B

mB

◆
3

˜

CF . (16)

Putting everything together, the spin-independent cross
section written as the conventional per nucleon rate for a
nucleus with (Z , A) from Eq. (2) becomes

�

nucleon

(Z, A) =

Z

4

A

2

144⇡↵

2

µ

2

nB(M

A
F )

2

m

6

BR

2

[↵m̃

3

B
˜

CF ]

2

,

(17)
where we use our lattice results in Table I to evalate the
factor in square brackets. We emphasize that, unlike Higgs
exchange, the cross section per nucleus scales as Z

4 and

not A

2, and so the cross section per nucleon must be calcu-
lated for each nucleus separately in order to compare with
experiment. The strongest bound on the spin-independent
direct detection scattering rate is from LUX [1]. In Fig. 2,
we show the scattering cross section per nucleon for xenon,
and compare with the LUX bounds. We plot only the
ND = 4 case here, as the ND = 3 baryons are already
excluded up to ⇠ 20 TeV in mass by the LUX bounds
through their magnetic moments [12].

Discussion – Our lattice results have allowed us to
calculate the spin-independent scattering cross section of
SU(4) stealth DM through polarizability, which we com-
pare against the LUX constraints in Fig. 2. We find DM
masses less than about 200 GeV are excluded, while the
DM mass range 200-700 GeV could be probed by fu-
ture experiments before reaching the neutrino background
[39]. Currently, the strongest lower bound on the DM
mass arises indirectly from the constraints on the lighter
electrically-charged mesons that can be produced and de-
cay promptly in collider experiments. Using our results
[23], we estimate that DM masses below about 280 GeV
are excluded given the LEP II bounds on the pseudoscalar
mesons.

It is remarkable that a composite DM particle with a
weak-scale mass, composed of dark fermions charged un-
der the weak and electromagnetic interaction, can never-
theless be safe from both direct detection constraints and
the LEP II constraint once mB

>⇠ 300 GeV. This sug-
gests there is a serious opportunity for future direct detec-
tion experiments to probe the model. Given that the scat-
tering cross section per nucleus scales as Z

4, the exper-
iments with the heaviest nuclei are often more sensitive,
i.e., xenon is 7 times more sensitive than argon if both
experiments reach the same limit on the (conventional)
spin-independent scattering per nucleon through Higgs ex-
change.

With our lattice calculation of the dark matter polariz-
ability in this model, the dominant remaining uncertainty
stems from the treatment of the non-perturbative nuclear
matrix element in Eq. (2), which is similar to the matrix el-
ements required for double beta decay. A significant source
of uncertainty is, for example, the presence of excited states
in Xe-129 and Ge-73 that have energies of 30 and 15 keV,
which will be probed by the loop in the cross section calcu-
lation (typical momenta exchanges are roughly at the MeV
scale). These resonances could appreciably change the re-
sulting cross section, though the steep dependence on the
dark matter mass suggests only a modest equivalent shift
of the DM mass.

The brightest opportunity for stealth dark matter discov-
ery may falls within the domain of the Large Hadron Col-
lider (and future colliders). Meson phenomenology is very
promising, since charged mesons can be produced through
electroweak processes and decay completely into SM par-
ticles. In contrast, production of the dark matter baryon is
rare, since it is considerably heavier than the mesons and

• Dark matter scatters by two-
photon exchange (a loop!) 

• Significant uncertainties on 
the nuclear physics side for 
this matrix element! 

fa
F ⌘ hA|Fµ⌫F

µ⌫ |Ai ⇠ 3Z2↵
MA

F

R

• Naive estimate - take MF
A in the 

range [1/3,3] to be conservative…
(similar to uncertainty claimed for 
0vββ-decay nuclear MEs.) 

• Enhancement due to excited 
nuclear states possible?

(see also: Weiner and Yavin, arXiv:1209.1093) 



Polarizability on the lattice

• Measure response to applied 
background field E (quadratic 
Stark shift)
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sists of an unbroken SU(4) gauge theory, which contains
bosonic baryonic bound states made up of four constituent
fermions. The DM candidate itself is a scalar made up of
two pairs of fermions which are degenerate in mass and
carry equal but opposite electric charges of ±1/2. Hence,
there is no magnetic moment or charge radius, leaving just
the electromagnetic polarizability as the dominant interac-
tion with photons.

Previous estimates of the polarizability of a composite
scalar have led to direct-detection cross sections on the or-
der of 10

�48 cm2 [20], approaching the interaction strength
at which background neutrinos are expected to contaminate
the DM recoil signal. However, the estimates were based
on semi-classical calculations of a strongly-coupled inter-
action, and so have uncontrolled uncertainties.

Additionally, due to how internal electric charges are
correlated, the polarizability of bosonic 4-fermion baryons
may differ appreciably from QCD-based estimates. In one
limit where the internal constituents are uncorrelated, the
polarizabilities are expected to be comparable. However,
if alternate flavors tend to form pairs based on their Pauli
statistics, the 4-fermion baryon polarizability would be
derivative-suppressed compared to the 3-fermion baryon
(i.e. two dipoles vs. one dipole and one charge). In order
to quantify this effect, we perform lattice calculations for
both the SU(3) and SU(4) baryon polarizabilities.

Polarizability and Direct Detection – The polarizabil-
ity operator can be written as an effective operator of the
form

OF = CF B

⇤
B F

µ⌫
Fµ⌫ , (1)

where B is the scalar baryonic composite DM field with
mass mB , Fµ⌫ is the electromagnetic field strength ten-
sor, and CF is the polarizability with mass dimension �3

in the nonrelativistic limit. This is a two-photon vertex,
so that the scattering off of nuclei will involve a virtual
photon loop. Because this operator is induced at a high
scale (roughly the dark confinement scale ⇤D ⇠ mB), it is
expected to generate other interactions with SM particles
when the appropriate effective field theory matching and
running down to the nuclear scale are carried out [24–27];
in fact, an explicit treatment for the polarizability operator
is given in [28]. Although the effects of the additional in-
duced operators are not negligible in general, we find that
they are small compared to the uncertainties (particularly
from nuclear physics) and so we will omit them.

From the interaction shown above, the coherent DM-
nucleus scattering cross section (per nucleon) is given by

�

nucleon

(Z, A) =

µ

2

nB

⇡A

2

D��
CF f

A
F

��2
E

, (2)

where mn is the nucleon mass, µnB = mnmB/(mn +

mB) is the reduced mass, (Z , A) are the atomic and mass
numbers of the target nucleus, and the angular brackets rep-
resent the momentum-averaged form factors for heavy DM
candidates in a given experiment [28].

The primary source of systematic uncertainty is on
the nuclear physics side of the calculation – evaluat-
ing the non-perturbative nuclear matrix element, f

A
F =

hA|F µ⌫
Fµ⌫ |Ai. Various attempts to perturbatively esti-

mate this matrix element have been performed with varying
levels of complexity [28–30]. But, the matrix element also
has nontrivial excited-state structures that likely require a
fully non-perturbative treatment. This matrix element is
similar to those needed for double-beta decay experiments,
estimates for which have substantial variation [31, 32]. Un-
til a more accurate extraction of this matrix element is per-
formed, we will use dimensional analysis arising from non-
relativistic loop momenta counting,

f

A
F ⇠ 3Z

2

↵

M

A
F

R

, (3)

where R = 1.2A

1/3 fm, as used in the double beta de-
cay context, ↵ is the fine-structure constant, and M

A
F is a

dimensionless parameter. With the factor of 3 in Eq. (3),
our expression approximately matches [28, 29] for heavy
nuclei when M

A
F ' 1. To allow for an order of mag-

nitude uncertainty in the nuclear matrix element, we take
1/3 < M

A
F < 3, although a detailed nuclear structure

extraction would be needed for a more precise estimate.
Background field method – In order to extract the elec-

tric polarizability from the lattice, the background field
method is employed, as described in Ref. [33, 34]. The
essence of this method is to measure baryon two-point cor-
relation functions in the presence of a uniform electric field
E . Working in Euclidean space, the background field in-
duces a quadratic Stark shift in the mass of the SU(4)

ground-state baryon,

EB,4c = mB + 2CF |E|2 + O �E4

�
, (4)

where CF is the desired polarizability1, as defined in
Eq. (1).

Due to the scalar nature of the SU(4) baryon ground
state, this relation is equivalent to what one would expect
for mesons. For comparison we also study the fermionic
SU(3) baryon, whose energy shift contains an additional
contribution from the non-zero magnetic moment µB [34],

EB,3c = mB +
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|E|2 + O �E4

�
. (5)

For the SU(3) theory, we must therefore determine µB as
well in order to extract CF from the background field de-
pendence.

The background field method is implemented following
Refs. [33, 34] where the uniform background field is in-
cluded by multiplying the unitary gauge links by two phase

1 The electric polarizability of the neutron ↵E is more commonly defined in
terms of the induced dipole moment ~d = 4⇡↵E

~E , giving a quadratic Stark
shift of �En = 1

2
~d · ~E = 2⇡↵E |E|2. In our notation ↵E = CF /⇡.

2

sists of an unbroken SU(4) gauge theory, which contains
bosonic baryonic bound states made up of four constituent
fermions. The DM candidate itself is a scalar made up of
two pairs of fermions which are degenerate in mass and
carry equal but opposite electric charges of ±1/2. Hence,
there is no magnetic moment or charge radius, leaving just
the electromagnetic polarizability as the dominant interac-
tion with photons.

Previous estimates of the polarizability of a composite
scalar have led to direct-detection cross sections on the or-
der of 10

�48 cm2 [20], approaching the interaction strength
at which background neutrinos are expected to contaminate
the DM recoil signal. However, the estimates were based
on semi-classical calculations of a strongly-coupled inter-
action, and so have uncontrolled uncertainties.

Additionally, due to how internal electric charges are
correlated, the polarizability of bosonic 4-fermion baryons
may differ appreciably from QCD-based estimates. In one
limit where the internal constituents are uncorrelated, the
polarizabilities are expected to be comparable. However,
if alternate flavors tend to form pairs based on their Pauli
statistics, the 4-fermion baryon polarizability would be
derivative-suppressed compared to the 3-fermion baryon
(i.e. two dipoles vs. one dipole and one charge). In order
to quantify this effect, we perform lattice calculations for
both the SU(3) and SU(4) baryon polarizabilities.

Polarizability and Direct Detection – The polarizabil-
ity operator can be written as an effective operator of the
form

OF = CF B

⇤
B F

µ⌫
Fµ⌫ , (1)

where B is the scalar baryonic composite DM field with
mass mB , Fµ⌫ is the electromagnetic field strength ten-
sor, and CF is the polarizability with mass dimension �3

in the nonrelativistic limit. This is a two-photon vertex,
so that the scattering off of nuclei will involve a virtual
photon loop. Because this operator is induced at a high
scale (roughly the dark confinement scale ⇤D ⇠ mB), it is
expected to generate other interactions with SM particles
when the appropriate effective field theory matching and
running down to the nuclear scale are carried out [24–27];
in fact, an explicit treatment for the polarizability operator
is given in [28]. Although the effects of the additional in-
duced operators are not negligible in general, we find that
they are small compared to the uncertainties (particularly
from nuclear physics) and so we will omit them.

From the interaction shown above, the coherent DM-
nucleus scattering cross section (per nucleon) is given by

�

nucleon

(Z, A) =

µ

2

nB

⇡A

2

D��
CF f

A
F

��2
E

, (2)

where mn is the nucleon mass, µnB = mnmB/(mn +

mB) is the reduced mass, (Z , A) are the atomic and mass
numbers of the target nucleus, and the angular brackets rep-
resent the momentum-averaged form factors for heavy DM
candidates in a given experiment [28].

The primary source of systematic uncertainty is on
the nuclear physics side of the calculation – evaluat-
ing the non-perturbative nuclear matrix element, f

A
F =

hA|F µ⌫
Fµ⌫ |Ai. Various attempts to perturbatively esti-

mate this matrix element have been performed with varying
levels of complexity [28–30]. But, the matrix element also
has nontrivial excited-state structures that likely require a
fully non-perturbative treatment. This matrix element is
similar to those needed for double-beta decay experiments,
estimates for which have substantial variation [31, 32]. Un-
til a more accurate extraction of this matrix element is per-
formed, we will use dimensional analysis arising from non-
relativistic loop momenta counting,

f

A
F ⇠ 3Z

2

↵

M

A
F

R

, (3)

where R = 1.2A

1/3 fm, as used in the double beta de-
cay context, ↵ is the fine-structure constant, and M

A
F is a

dimensionless parameter. With the factor of 3 in Eq. (3),
our expression approximately matches [28, 29] for heavy
nuclei when M

A
F ' 1. To allow for an order of mag-

nitude uncertainty in the nuclear matrix element, we take
1/3 < M

A
F < 3, although a detailed nuclear structure

extraction would be needed for a more precise estimate.
Background field method – In order to extract the elec-

tric polarizability from the lattice, the background field
method is employed, as described in Ref. [33, 34]. The
essence of this method is to measure baryon two-point cor-
relation functions in the presence of a uniform electric field
E . Working in Euclidean space, the background field in-
duces a quadratic Stark shift in the mass of the SU(4)

ground-state baryon,

EB,4c = mB + 2CF |E|2 + O �E4

�
, (4)

where CF is the desired polarizability1, as defined in
Eq. (1).

Due to the scalar nature of the SU(4) baryon ground
state, this relation is equivalent to what one would expect
for mesons. For comparison we also study the fermionic
SU(3) baryon, whose energy shift contains an additional
contribution from the non-zero magnetic moment µB [34],

EB,3c = mB +
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For the SU(3) theory, we must therefore determine µB as
well in order to extract CF from the background field de-
pendence.

The background field method is implemented following
Refs. [33, 34] where the uniform background field is in-
cluded by multiplying the unitary gauge links by two phase

1 The electric polarizability of the neutron ↵E is more commonly defined in
terms of the induced dipole moment ~d = 4⇡↵E

~E , giving a quadratic Stark
shift of �En = 1

2
~d · ~E = 2⇡↵E |E|2. In our notation ↵E = CF /⇡.

• SU(3) case simulated for 
comparison; complicated by 
magnetic moment μB

• Comparable results for SU(3) 
and SU(4), in units of mB.

4

ND mPS/mV m̃B ↵ ˜CF ↵2
˜C0
F µ̃B µ̃0

B �2/dof
4 0.77 0.98204(93) 0.1420(56) -0.089(29) — — 0.7/3

0.70 0.88805(113) 0.1514(106) -0.142(68) — — 4.8/3
3 0.77 0.69812(51) 0.2829(127) -0.177(45) -6.87(26) 714(103) 3.0/7

0.70 0.61904(59) 0.2829(81) -0.165(24) -5.55(18) 396(78) 13.4/7

TABLE I. Results for the polarizabilities and magnetic moments
of the baryonic composites of a strongly-coupled SU(ND) theory,
in lattice units.

Constructing the dimensionless product ↵

˜

CF m̃

3

B (as
needed for the DM cross section), we find that the SU(4)
polarizabilities are larger than SU(3) by about 50%. Thus,
we find the SU(3) and SU(4) polarizabilities to be compa-
rable when normalized to the baryon mass. Of course, the
baryon mass itself scales proportional to ND; if we were
to set the scale using a quantity such as the string tension
which does not scale with ND, then the SU(3) polarizabil-
ity would be larger.

The effect of the quenched approximation, in which dy-
namical fermion loops are omitted from the lattice calcu-
lation, is not straightforward to estimate. However, the ef-
fects of such loops are expected to be suppressed with large
ND and heavy fermion mass; we note that even for QCD
with its much lighter fermions, the effects of quenching are
generally at most of order 10% [37].

Our calculations are performed at a single lattice spac-
ing and volume, both of which can lead to additional
systematic effects. We expect all of these corrections to
be small relative to the order of magnitude uncertainty
taken for the nuclear matrix element M

A
F . As a cross-

check, we note that the neutron polarizability from the
PDG [38] gives CF m

3

n ' 0.36 at the QCD physical ra-
tio mPS/mV = 0.18, while our SU(3) lattice simulations
give CF m

3

B ' 0.84 at mPS/mV = 0.70. These results
are broadly consistent with the expected scaling of the po-
larizability and baryon mass with mPS .

Direct detection cross sections – To relate the dimen-
sionless lattice results to the dimensionful DM mass, mB ,
that we vary continuously in order to scan the parameter
space of the theory, it is most convenient to give units to
the lattice spacing a = m̃B/mB . Along with Eq. (8), this
leads to the physical value of the polarizability

CF = 4⇡↵

✓
m̃B

mB

◆
3

˜

CF . (16)

Putting everything together, the spin-independent cross
section written as the conventional per nucleon rate for a
nucleus with (Z , A) from Eq. (2) becomes

�

nucleon

(Z, A) =
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4

A

2

144⇡↵

2

µ

2

nB(M

A
F )

2

m

6

BR

2

[↵m̃

3

B
˜

CF ]

2

,

(17)
where we use our lattice results in Table I to evalate the
factor in square brackets. We emphasize that, unlike Higgs
exchange, the cross section per nucleus scales as Z

4 and

not A

2, and so the cross section per nucleon must be calcu-
lated for each nucleus separately in order to compare with
experiment. The strongest bound on the spin-independent
direct detection scattering rate is from LUX [1]. In Fig. 2,
we show the scattering cross section per nucleon for xenon,
and compare with the LUX bounds. We plot only the
ND = 4 case here, as the ND = 3 baryons are already
excluded up to ⇠ 20 TeV in mass by the LUX bounds
through their magnetic moments [12].

Discussion – Our lattice results have allowed us to
calculate the spin-independent scattering cross section of
SU(4) stealth DM through polarizability, which we com-
pare against the LUX constraints in Fig. 2. We find DM
masses less than about 200 GeV are excluded, while the
DM mass range 200-700 GeV could be probed by fu-
ture experiments before reaching the neutrino background
[39]. Currently, the strongest lower bound on the DM
mass arises indirectly from the constraints on the lighter
electrically-charged mesons that can be produced and de-
cay promptly in collider experiments. Using our results
[23], we estimate that DM masses below about 280 GeV
are excluded given the LEP II bounds on the pseudoscalar
mesons.

It is remarkable that a composite DM particle with a
weak-scale mass, composed of dark fermions charged un-
der the weak and electromagnetic interaction, can never-
theless be safe from both direct detection constraints and
the LEP II constraint once mB

>⇠ 300 GeV. This sug-
gests there is a serious opportunity for future direct detec-
tion experiments to probe the model. Given that the scat-
tering cross section per nucleus scales as Z

4, the exper-
iments with the heaviest nuclei are often more sensitive,
i.e., xenon is 7 times more sensitive than argon if both
experiments reach the same limit on the (conventional)
spin-independent scattering per nucleon through Higgs ex-
change.

With our lattice calculation of the dark matter polariz-
ability in this model, the dominant remaining uncertainty
stems from the treatment of the non-perturbative nuclear
matrix element in Eq. (2), which is similar to the matrix el-
ements required for double beta decay. A significant source
of uncertainty is, for example, the presence of excited states
in Xe-129 and Ge-73 that have energies of 30 and 15 keV,
which will be probed by the loop in the cross section calcu-
lation (typical momenta exchanges are roughly at the MeV
scale). These resonances could appreciably change the re-
sulting cross section, though the steep dependence on the
dark matter mass suggests only a modest equivalent shift
of the DM mass.

The brightest opportunity for stealth dark matter discov-
ery may falls within the domain of the Large Hadron Col-
lider (and future colliders). Meson phenomenology is very
promising, since charged mesons can be produced through
electroweak processes and decay completely into SM par-
ticles. In contrast, production of the dark matter baryon is
rare, since it is considerably heavier than the mesons and

• Technique pioneered by 
Detmold, Tiburzi, Walker-
Loud (arXiv:1001.1131)
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4. Outlook



Meson production

• First signature expected: 
Drell-Yan photon 
production of charged Π  

• To calculate rate, pion form 
factor needed at threshold: 
FV(Q2=4mΠ

2) 

• Hard to access at this 
momentum on lattice 
directly.  Planning 
calculations of “rho” 
properties, to use with 
vector-meson dominance
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Fig. 1. The scattering phase in the vector channel (left) for the Breit–Wigner model (dashed line) and the Inverse Amplitude
Method (solid line). We also plot the square form factor modulus (right). To be able to plot the spacelike and timelike data

together, the first is plotted against the unphysical variable −
√

−q2 with q2 the (negative) spacelike momentum transfer. Here
we use ⟨r2⟩ as input as described in the text.

variation of the cut–off, although the integral is basically converged for a cut–off of 2 GeV). It agrees to
that from vector meson dominance which is about 3.5 GeV−4 [2] and it is consistent with the constraint
[2.3 GeV−4, 5.4 GeV−4] from analyzing the form factor data using analyticity [19]. The advantage of our
analysis is that it allows in addition for a controlled estimate of the uncertainty. Equivalently, the result in
term of quartic radius is

⟨r4⟩ = 0.68 ± 0.06 fm4 . (13)

As mentioned above we will investigate the quark mass dependence of the pion form factor based on the
assumption that gρππ is independent of the quark mass with the mπ dependence of mρ taken from other
sources. Since both parameters are explicit in the parametrization given above, we may study the resulting
quark mass dependence of cπ

V , once that of ⟨r2⟩ is fixed.

3. Chiral perturbation theory

3.1. General considerations

In order to determine the quark mass dependence of the square radius, which is the input needed for the
formalism described above, we will use the results of χPT. Clearly, the curvature cπ

V as well as its quark
mass dependence, could also be determined in χPT directly. Depending on the fit and systematics chosen in
Ref. [16], which is two–flavor O(p6) χPT calculation, its value could vary between 2−6 GeV−4, although the
authors quote a value around 4 GeV−4, in agreement with a previous estimate [2] (By fitting to form factor
data, they obtain 3.85 GeV−4). A O(p6) fit in three–flavor χPT leads to a range 4.49 ± 0.28 GeV−4 [13].
Adopting cπ

V = 4 ± 2 GeV−4 as the NNLO χPT result, we obtain ⟨r4⟩/⟨r2⟩2 = 4 ± 2. This value is copied
into Table 1.

3.2. Matching the Omnès representation

We start by giving the chiral expansion of the vector form factor [26] valid to NLO in χPT,

F (t) = 1 +
1

6f2
π

(t − 4m2
π)J̄(t) +

t

96π2f2
π

(l̄6 −
1

3
) . (14)
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(arXiv:0812.3270)
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Indirect detection: fireballs and gamma rays

• With thermal origin or dark 
nucleon oscillation, can have 
an indirect gamma-ray signal 
from DM annihilation! 

• Expected to be quite 
complicated…e.g. QCD 
annihilation at low 
momentum gives many-pion 
final states. 

• This may also change the 
story for thermal abundance!

MeV/s were available at CERN. It is impressive to com-
pare the high flux of today’s antiproton beams
(.106p̄/s) with the rate of about 1p̄ every 15 minutes in
the early work when the antiproton was discovered,
back in 1955 (Chamberlain, 1955).

The author was asked by Reviews of Modern Physics
to write a report on Crystal Barrel results. A general
review on light-quark spectroscopy or a detailed survey
of the p̄p annihilation mechanism are beyond the scope
of this review and can be found elsewhere in the litera-
ture (Amsler and Myhrer, 1991; Dover et al., 1992;
Blüm, 1996; Landua, 1996). The topics emphasized in
this review reflect the personal taste and scientific inter-
est of the author. Some of the results on p̄d annihilation
will not be reviewed here. They include the observation
of the channels p̄d!p

0n ,hn ,vn (Amsler et al., 1995a),
and p̄d!D(1232)p

0 (Amsler et al., 1995b), which in-
volve both nucleons in the annihilation process.

Alternative analyses of Crystal Barrel data have been
performed by other groups or by individuals from within
the collaboration. I shall not describe them in detail
since they basically lead to the same results. However,
small differences, e.g., in masses and widths of broad
resonances, are reported. They can be traced to the use
of a more flexible parametrization involving additional
parameters (Bugg et al., 1994), and, most importantly, to
the inclusion of data from previous experiments study-
ing different reactions like central collision or inelastic
pp scattering (e.g., Abele et al., 1996a, Bugg, Sarantsev,
and Zou, 1996; Anisovich, Anisovich, and Sarantsev,
1997). In order not to confuse with foreign data and
unknown biases the contributions that Crystal Barrel
has made to spectroscopy, I shall only deal with experi-
mental results published by the Crystal Barrel Collabo-
ration or submitted for publication until 1997, but will
provide a comparison with previous data, whenever ap-
propriate.

The experiment started data taking in late 1989 and
was completed in autumn 1996 with the closure of
LEAR. The Crystal Barrel was designed to study low-
energy p̄p annihilation with very high statistics, in par-
ticular annihilation into n charged particles (n-prong)
and m neutrals (p

0,h ,h8 or v) with m>2, leading to
final states with several photons. These annihilation
channels occur with a probability of about 50% and had
not been investigated previously. They are often simpler
to analyze due to C-parity conservation, which limits the
range of possible quantum numbers for the intermediate
resonances and the p̄p initial states.

Most of the data analyzed were taken by stopping an-
tiprotons in liquid hydrogen, on which I shall therefore
concentrate. This article is organized as follows: After a
brief reminder of the physical processes involved when
antiprotons are stopped in liquid hydrogen (Sec. II), I
shall describe in Sec. III the Crystal Barrel apparatus
and its performance. The review then covers results rel-
evant to the annihilation mechanism and the roles of
quarks in the annihilation process (Sec. IV). Electro-
magnetic processes are covered in Sec. V. The observa-

tion of a strangeness enhancement may possibly be re-
lated to the presence of strange quarks in the nucleon
(Sec. VI). After describing the mathematical tools for
extracting masses and spins of intermediate resonances
(Sec. VII), I shall review in Secs. VIII to X what is con-
sidered to be the main achievement, the discovery of
several new mesons, in particular a scalar (JP501) state
around 1500 MeV, which is generally interpreted as the
ground-state glueball. Section XI reports on the status of
hybrid mesons. Section XII finally describes the status of
pseudoscalar mesons in the 1400-MeV region.

II. PROTON-ANTIPROTON ANNIHILATION AT REST; S
AND P WAVES

Earlier investigations of low-energy p̄p annihilation
dealt mainly with final states involving charged mesons
(p

6,K6) or KS!p

1
p

2, with at most one missing (un-
detected) p

0, due to the lack of a good g detection fa-
cility [for reviews, see Armenteros and French (1969),
Sedlák and Šimák (1988), and Amsler and Myhrer
(1991)].

The average charged pion multiplicity is 3.060.2 for
annihilation at rest and the average p

0 multiplicity is
2.060.2. The fraction of purely neutral annihilations
(mainly from channels like 3p

0, 5p

0, 2p

0
h , and 4p

0
h

decaying to photons only) is (3.960.3)% (Amsler et al.,
1993a). This number is in good agreement with an ear-
lier estimate from bubble chambers, 4.120.6

10.2% (Ghes-
quière, 1974). In addition to pions, h mesons are pro-
duced with a rate of about 7% (Chiba et al., 1987) and
kaons with a rate of about 6% of all annihilations (Sed-
lák and Šimák, 1988).

In fireball models the pion multiplicity N5N11N2

1N0 , where the subscripts stand for positive, negative,
and neutral pions, respectively, follows a Gaussian dis-
tribution (Orfanidis and Rittenberg, 1973). The pion
multiplicity distribution at rest in liquid hydrogen is
shown in Fig. 1. Following the model of Pais (1960) one

FIG. 1. Pion multiplicity distribution for p̄p annihilation at
rest in liquid hydrogen: h , statistical distribution; d , data; s ,
estimates from Ghesquière (1974). The curve is a Gaussian fit
assuming

^

N
&
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Proton-antiproton annihilation and meson spectroscopy
with the Crystal Barrel
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Physik-Institut der Universität Zürich, CH-8057 Zürich, Switzerland

This report reviews the achievements of the Crystal Barrel experiment at the Low-Energy Antiproton
Ring (LEAR) at CERN. During seven years of operation Crystal Barrel has collected very large
statistical samples in p̄p annihilation, especially at rest and with emphasis on final states with high
neutral multiplicity. The measured rates for annihilation into various two-body channels and for
electromagnetic processes have been used to test simple models for the annihilation mechanism based
on the internal quark structure of hadrons. The production of f mesons is larger than predicted in
several annihilation channels. Important contributions to the spectroscopy of light mesons have been
made. The exotic r̂(1405) meson with quantum numbers JPC5121 has been observed in its hp decay
mode. Two 221 isoscalar mesons h2(1645) and h2(1870), and the 021 isoscalar meson h(1410) have
been observed in the hpp decay channel. From three-body annihilations three 011 mesons,
a0(1450), f0(1370), and f0(1500) have been established in various decay modes. One of them,
f0(1500), may be identified with the expected ground-state scalar glueball. [S0034-6861(98)00404-8]
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I. INTRODUCTION

Low-energy antiproton-proton annihilation at rest is a
valuable tool to investigate phenomena in the low-
energy regime of quantum chromodynamics (QCD).
Due to the absence of Pauli blocking, the antiproton and
proton wave functions overlap, and one expects the in-
teractions between constituent quarks and antiquarks
(annihilation, pair creation, or rearrangement) to play
an important role in the annihilation process. From
bubble-chamber experiments performed in the sixties
(Armenteros and French, 1969) one knows that annihi-
lation proceeds through qq̄ intermediate meson reso-
nances. The v(782), f1(1285), E/h(1440), and
K1(1270) mesons were discovered and numerous prop-
erties of other mesons

@

a0(980), K*(892), f(1020),
a2(1320)] were studied in low-energy p̄p annihilation.1

With the advent of QCD one now also predicts states
made exclusively of gluons (glueballs), of a mixture of
quarks and gluons (hybrids), and multiquark states, all
of which can be produced in p̄p annihilation.

With the invention of stochastic cooling and the op-
eration of the Low-Energy Antiproton Ring (LEAR)
from 1983 to 1996, intense and pure accelerator beams
of low-momentum antiprotons between 60 and 1940

1Throughout this review mesons are labeled with the names
adopted in the 1996 issue of the Review of Particle Physics
(Barnett, 1996).
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Other Open Questions

• Can composite models account for self-interacting dark 
matter astronomical hints?  (Back of the envelope says 
this is tough for stealth at allowed masses, but in 
general?) 

• Model building: how well-motivated is M~Λ?  How do 
these models fit into [your favorite UV completion]? 

• Glueball dark matter?  Formation of “dark nuclear” bound 
states?  Here some lattice input is needed, but there has 
been some interesting work anyway…

K. Boddy, J. Feng, M. Kaplinghat, Y. Shadmi, T. Tait, arXiv:1408.6532  and arXiv:1402.3629
W. Detmold, M. McCullough, A. Pochinsky, arXiv:1406.2276 and 1406.4116
E. Hardy, R. Lasenby, J. March-Russell, S. West, arXiv:1411.3739 and 1504.05419 (and others!)

http://arxiv.org/abs/1408.6532


Conclusions

• Composite dark matter models are 
viable, interesting, but can be hard 
to study due to strong coupling - 
lattice is a great tool here. 

• Stealth dark matter is a particular 
example - very hard to see in direct 
detection (but window below 1 TeV)! 

• Next step is a detailed calculation of 
the relic abundance - we have 
some ideas for thermal and 
asymmetric, but work to do 

• Lots of room for interesting pheno in 
composite DM, even before a lattice 
calculation comes in!
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Higgs exchange cross 
section in Stealth DM

• Need to non-perturbatively 
evaluate the σ-term of the dark 
baryon (scalar nuclear form 
factor) 

• Effective Higgs coupling non-
trivial with mixed chiral and 
vector-like masses 

• Model-dependent answer for the 
cross-section in this channels 

• A non-negligible vector mass is 
needed to evade direct 
detection bounds
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