



## Quarkonia in <u>Heavy Ions Collisions</u>

26 Oct 2015

Jason Kamin University of Illinois at Chicago

<u>Outline</u>

1) Intro to Heavy lons

2) Quarkonia in PbPb

3) Quarkonia in pPb

SMU Physics Seminar





Heavy ion collisions aim to create Quark Gluon Plasma (QGP) in the lab:

• QCD medium where quarks and gluons are the relevant degrees of freedom







phase transition

Heavy ion collisions aim to create Quark Gluon Plasma (QGP) in the lab:

• QCD medium where quarks and gluons are the relevant degrees of freedom

#### High Density QCD

- Verify QGP existence
- Study its thermodynamic and transport properties
  - temperature
  - entropy/viscosity
  - transport coefficients
- Investigate phase transition
  - determine critical point ?







phase transition

Heavy ion collisions aim to create Quark Gluon Plasma (QGP) in the lab:

• QCD medium where quarks and gluons are the relevant degrees of freedom

### High Density QCD

- Verify QGP existence
- Study its thermodynamic and transport properties
  - temperature
  - entropy/viscosity
  - transport coefficients
- Investigate phase transition
  - determine critical point ?



After 15 years of RHIC/LHC operation

- Clear evidence for formation of strongly coupled QGP !
- Entropy/density:  $(\eta/s)_{min} \sim 1/4\pi$
- Energy density ( $\tau_0 = 1 \text{ fm/c}$ ): ~5 GeV/fm<sup>3</sup> (RHIC), 14 GeV/fm<sup>3</sup> (LHC)



### Stages of Heavy Ion Collision

#### evolution





as superposition of  $N_{Coll}$ 

binary partonic scatters





- Can QQ survive temperature of QGP ?
- Color screening in deconfined plasma dissolves QQ bound states (Matsui-Satz 1986)
- Debye length  $\lambda_D < r_{binding} \rightarrow bound state melts !$
- Hierarchy in binding energies leads to thermometer









- Can QQ survive temperature of QGP ?
- Color screening in deconfined plasma dissolves QQ bound states (Matsui-Satz 1986)
- Debye length  $\lambda_D < r_{binding} \rightarrow bound state melts !$
- Hierarchy in binding energies leads to thermometer

- Lattice QCD on quarkonia spectral functions predicts
  - +  $\psi$  ',  $\chi_c$  dissolve ~  $T_{crit}$
  - J/ $\psi$  dissolves ~1.5-2 T<sub>crit</sub>
  - Y survives to ~3-4  $T_{crit}$
  - $T_{crit} \sim 175 \text{ MeV}$







- Can QQ survive temperature of QGP ?
- Color screening in deconfined plasma dissolves QQ bound states
- Hierarchy in binding energies leads to thermometer

#### **Statistical Regeneration**

- Heavy quarks re-combining
- As cc multiplicity rises, probability to randomly "pair up" increases...
- Can lead to charmonium enhancement !
- Effect limited to  $p_T < 4$  GeV/c

| Most Central           | SPS    | RHIC    | LHC      |
|------------------------|--------|---------|----------|
| A-A Collisions         | 20 GeV | 200 GeV | 2.76 TeV |
| N <sub>cc</sub> /event | ~0.2   | ~10     | ~60      |







### Quarkonia Modifications



#### Thermal Dissociation (quarkonia "melting")

- Can QQ survive temperature of QGP ?
- Color screening in deconfined plasma dissolves QQ bound states
- Hierarchy in binding energies leads to thermometer

#### **Statistical Regeneration**

- Heavy quarks re-combining
- As cc multiplicity rises, probability to randomly "pair up" increases...
- Can lead to charmonium enhancement !
- Effect limited to  $p_T < 4$  GeV/c

#### Initial state effects

- nPDF modification
- gluon saturation/shadowing
- suppression of quarkonia production before QGP forms









- Can QQ survive temperature of QGP ?
- Color screening in deconfined plasma dissolves QQ bound states
- Hierarchy in binding energies leads to thermometer

### **Statistical Regeneration**

- Heavy quarks re-combining
- As cc multiplicity rises, probability to randomly "pair up" increases...
- Can lead to charmonium enhancement !
- Effect limited to  $p_T < 4$  GeV/c

### Initial state effects

- nPDF modification
- gluon saturation/shadowing
- suppression of quarkonia production before QGP forms





### Compact Muon Solenoid







CMS Muons





Transverse slice through CMS

- 3.8 T solenoid magnet
- Use silicon tracker and outer muon stations
- Excellent muon ID and triggering (DT, CSC, RPC)
- High mass/momentum resolution



### **CMS** Acceptance





• Due to B-Field and E-loss in absorber, minimum momentum to reach muon stations is ~3.5 GeV/c

 $J/\psi$  acceptance:

- mid-rapidity,  $p_T > 6.5 \text{ GeV}/c$  , |y| < 0.9
- Forward rap,  $p_T > 3 \mbox{ GeV/}{c}$  ,  $1.5 < \left| y \right| < 2.4$

Y acceptance

•  $p_T > 0 \text{ GeV/}c$  , |y| < 2.4











- Quantifies spectral modification due to nuclear effects
  - How different are AA collisions compared to a superposition of N<sub>coll</sub> pp collisions?
- $R_{AA} \approx 1 \rightarrow$  no modification from  $N_{coll}$  independent pp hard scatterings - no medium effects!







- Quantifies spectral modification due to nuclear effects
  - How different are AA collisions compared to a superposition of N<sub>coll</sub> pp collisions?
- $R_{AA} \approx 1 \rightarrow$  no modification from  $N_{coll}$  independent pp hard scatterings - no medium effects!



### Centrality

Measure of amount of nuclear overlap.

Represents system moving towards a larger, hotter, denser medium.





Central (0%)













- Suppression independent of rapidity
  - note  $p_T > 6.5 \text{ GeV/c}$



### J/ψ Suppression in PbPb (AuAu)







- Suppression independent of rapidity
  - note  $p_T > 6.5 \text{ GeV/c}$
- LHC more suppressed than RHIC
  - supports thermal melting



### J/ψ Suppression in PbPb

vs centrality at different  $p_T$ 





- Suppression independent of rapidity
  - note  $p_T > 6.5 \text{ GeV/c}$
- LHC more suppressed than RHIC
  supports thermal melting
- High  $p_T$  more suppressed than low  $p_T$ 
  - supports statistical recombination (should only affect below ~4 GeV/c)



# J/ψ Suppression in PbPb





- Suppression independent of rapidity
  - note  $p_T > 6.5 \text{ GeV/c}$
- LHC more suppressed than RHIC
  supports thermal melting
- $\bullet$  High  $p_{T}$  more suppressed than low  $p_{T}$ 
  - supports statistical recombination (should only affect below ~4 GeV/c)
- ALICE consistent with CMS



### J/ψ Suppression in PbPb (AuAu)

vs p<sub>T</sub>, comparing colliders



- Suppression independent of rapidity
  - note  $p_T > 6.5 \text{ GeV/c}$
- LHC more suppressed than RHIC
  supports thermal melting
- $\bullet$  High  $p_{T}$  more suppressed than low  $p_{T}$ 
  - supports statistical recombination (should only affect below ~4 GeV/c)
  - diff btwn RHIC & LHC at  $p_T < 4$  GeV/c
- ALICE consistent with CMS
- PHENIX not consistent with ALICE at low p<sub>T</sub> (regeneration!)

DE ILLINOIS

AT CHICAGO



### J/ψ Suppression in Heavy Ions

vs centrality, LHC vs RHIC











ψ'



### ψ' Suppression in PbPb









- $\psi$ ' very suppressed at high  $p_T$  (more than  $J/\psi$ )
  - $R_{AA}(\psi') = 0.13 \pm 0.05$ hints at sequential melting?
- Less suppression at low p<sub>T</sub>
  - $R_{AA}(\psi') = 0.67 \pm 0.19$ can regeneration play a role ?
  - rapidity ?
- Large uncertainties...



### $\psi$ ' Suppression in PbPb



double ratio



- ALICE (maybe) sees different trend ?
- Kinematic ranges aren't perfectly aligned



- $\psi$ ' very suppressed at high  $p_T$  (more than  $J/\psi$ )
  - $R_{AA}(\psi') = 0.13 \pm 0.05$ hints at sequential melting?
- Less suppression at low p<sub>T</sub>
  - $R_{AA}(\psi') = 0.67 \pm 0.19$ can regeneration play a role ?
  - rapidity ?
- Large uncertainties...



### $\psi$ ' Suppression in PbPb

kinemtic coverage







- Odd relative suppression pattern
- CMS and ALICE don't overlap kinematically
- Large uncertainties !
- Picture not yet clear







# Towards Higher Mass...





#### Advantages of bottomonium

- No feeddown from open heavy flavor to deal with.
- Recombination expected to be smaller
- Tightly bound 1S state expected not to melt much
- Higher b quark mass makes
   calculations more robust

However,

• Much (~20X) smaller production xsec than charmonium



0-100% R<sub>AA</sub> (Y(3S)) <0.1 (at 95% C.L.)



### Upsilon Suppression in PbPb



vs p<sub>T</sub>, vs rapidity



0-100% R<sub>AA</sub> (Y(3S)) <0.1 (at 95% C.L)

SMU Seminar – 26 Oct 2015









- Under the caveat/assumption that low  $p_T$  J/ $\psi$ ,  $\psi$ ' effects are due to regeneration
- R<sub>AA</sub> appears ordered with respect to binding energy !
- Need more data vs centrality
- Disentangle feeddown
- Unravel p<sub>T</sub> dependence
- Must unfold cold nuclear effects (pPb)
- Calibrating/tuning the thermometer...
  Stay tuned for Run II





Two major effects in AA collisions:

- Thermal dissociation (breakup)
- Statistical regeneration (recombination)

Must disentangle pA effects:

- PDF modifications in nuclei (shadowing)
- Gluon saturation
- Energy loss
- Nuclear absorption
- In addition, pA heavy flavor can help constrain nPDFs





# J/\U0164 Cold Nuclear Effects

UNIVERSITY OF ILLINOIS AT CHICAGO

#### Rapidity dependence of R<sub>pPb</sub>:

- Suppression in positive-y (low-x in Pb nucleus)
- Little modification at negative-y

Described reasonably well by models:

- NLO with ESP09 shadowing
- Coherent energy loss (w/wo ESP09)
- CGC models, less well





## J/\U0164 Cold Nuclear Effects

UNIVERSITY OF ILLINOIS AT CHICAGO

JHEP 02 (2014) 073 Rapidity dependence of R<sub>pPb</sub>: e<sup>4</sup>1.4 p-Pb \s\_\_= 5.02 TeV ALICE (JHEP 02 (2014) 073): inclusive J/ψ→µ\*µ\*, 0<p\_<15 GeV/c • Suppression in positive-y (low-x in Pb nucleus) Lint (-4.46<y \_\_\_\_<-2.96)= 5.8 nb<sup>-1</sup>, L\_\_\_ (2.03<y \_\_\_<3.53)= 5.0 nb<sup>-1</sup> ALICE Preliminary: inclusive J/y-e\*e\*, p\_>0 L<sub>int</sub> (-1.37<y\_\_\_<0.43)= 52 µb<sup>-1</sup> Little modification at negative-y global uncertainty = 3.4%  $p_{T}$  dependence of  $R_{pPb}$ : 0.8 • Suppression at low p<sub>T</sub> 0.6 0.4 Described reasonably well by models: EPS09 NLO (Vogt) CGC (Fujii et al.) 0.2 NLO with ESP09 shadowing ELoss, q\_=0.075 GeV<sup>2</sup>/fm (Arleo et al.) EPS09 NLO + ELoss, q =0.055 GeV<sup>2</sup>/fm (Arieo et al.) Coherent energy loss (w/wo ESP09) n -3 • CGC models, less well ALICE Preliminary ALICE Preliminary e<sup>4</sup> 1.4 p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow \mu^+\mu$ p-Pb  $\sqrt{s_{NN}}$ = 5.02 TeV, inclusive J/ $\psi \rightarrow u^+ u$ 2.03<y cms<3.53, Lint= 5.0 nb -4.46<y\_me<-2.96, L\_int= 5.8 nb 1.2 1.2 0.8 0.8 0.6 0.6 0.4 0.4 EPS09 NLO (Vogt PS09 NLO (Vogt) CGC (Fuiji et al.) 0.2 0.2 ELoss with q\_=0.075 GeV<sup>2</sup>/fm (Arleo et al.) ELoss with q =0.075 GeV<sup>2</sup>/fm (Arleo et al.) EPS09 NLO + ELoss with q =0.055 GeV<sup>2</sup>/fm (Arleo et al.) EPS09 NLO + ELoss with q =0.055 GeV<sup>2</sup>/fm (Arleo et al.) 0 6  $p_{\rm (GeV/c)}$ p (GeV/c) I-PREL-79745

SMU Seminar - 26 Oct 2015



### J/ $\psi$ Cold Nuclear Effects

inter-experiment agreement











- $\psi'$  is more suppressed than  $J/\psi$
- Models predict similar behavior for J/ $\psi$  and  $\psi'$
- Ratio of  $R_{pA}$  for  $\psi'$  to  $J/\psi$  similar at RHIC
  - RHIC: 200 GeV, d+Au
- Hints at final state effect?
- Unexpected since charmonia formation time larger than cc crossing time in nucleus









Jason Kamin

SMU Seminar - 26 Oct 2015









- Y(1S) agrees with NLO (+ nuclear modification)
  - Similar to  $J/\psi$  though different PDF scale









- Y(1S) agrees with NLO (+ nuclear modification)
  - Similar to  $J/\psi$  though different PDF scale
- Small relative suppression of 2S,3S wrt 1S at mid-rapidity
- CNM cannot account for effects observed in PbPb







Quarkonia serve as a useful probe of QGP

Illuminate two primary mechanisms:

#### Thermal dissociation

- Sequential melting of quarkonia bound states with binding energy
- Y and high  $p_{T}\left(J/\psi\right)$  and central collisions

#### Statistical regeneration

- Pairing of random quarks in the medium
  - Relevant for LHC !
- Low  $p_T \psi$  family
- Cold nuclear effects are relevant!
- QGP "thermometer" is tantalizingly close
  - Run II will provide higher precision for more differential measurements









## History of Universe

#### evolution







### **Upsilon Mass Spectra**



systems of interest







Regeneration  $J/\psi$ 







• Regeneration limited to  $\sim p_T < 4 \text{ GeV/c}$ 









- Flat  $p_T$  dependence
- No apparent regeneration

• Flat rapidity dependence

- Uniform suppression
- Latest calculations match





- Can QQ survive temperature of QGP ?
- Color screening in deconfined plasma dissolves QQ bound states
- Hierarchy in binding energies leads to thermometer

#### **Statistical Regeneration**

- Heavy quarks re-combining
- As cc multiplicity rises, probability to randomly "pair up" increases...
- Can lead to charmonium enhancement !
- Effect limited to  $p_T < 4$  GeV/c

| Most Central           | SPS    | RHIC    | LHC      |
|------------------------|--------|---------|----------|
| A-A Collisions         | 20 GeV | 200 GeV | 2.76 TeV |
| N <sub>cc</sub> /event | ~0.2   | ~10     | ~60      |



