

Cosmology in the Era of Big Surveys

M.A.Troxel

University of Texas at Dallas

Southern Methodist University - Dallas, TX (3/25/13)

Outline

Cosmology

- Concordance (ΛCDM) model
- Cosmological probes Planck results!

Weak gravitational lensing

- Cosmological information
- Systematics and limitations

Intrinsic alignment of galaxies

- Impact on cosmology
- Self-calibration techniques

The Szekeres metric

Interpretations of data

Cosmology: A History Lesson

ΛCDM

Concordance model of cosmology

- Lambda (dark energy) + Cold Dark Matter in a perturbed FLRW metric
- Extremely successful!

Agreement across data sets

- Cosmic microwave background (CMB)
- Supernovae Ia
- Baryon acoustic oscillations (BAO)
- Gravitational lensing
- And more...

Credit: ESA – C. Carreau

ΛCDM – precise constraints

New Planck results (+WMAP polarization)

• 0.05%-5% precision in parameter constraints

Exciting possibilities...

Systematic limitations

- Understanding the physics
- Testing our interpretations
 - Exploring new physics

	Planck+WP				
Parameter	Best fit	68% limits			
Ω_{Λ}	0.6817	0.685+0.018			
Ω _m	0.3183	0.315+0.016			
σ ₈	0.8347	0.829 ± 0.012			
H_0	67.04	67.3 ± 1.2			
Age/Gyr	13.8242	13.817 ± 0.048			
Z*	1090.48	1090.43 ± 0.54			

Credit: Planck Collaboration, submitted A&A (2013)

Weak Gravitational Lensing: Cosmic Shear

Gravitational lensing

Credit: APS

Credit: ITA, Bartelmann

Cosmic Shear:

Weak gravitational lensing by largescale structure

Weak gravitational lensing (cosmic shear)

Powerful probe for cosmology

- Map dark matter
- Large-scale structure

Parameter constraints

- Factor of 2-4 improvement:
 - DE eqn. of state
 - Matter fluctuation amp.

Test of gravity on large scale

Measuring cosmic shear

Cosmic shear is weak (lensing)

- Quantified by ellipticity
- ...intrinsic alignment

Statistical correlation of shapes

- Average 10⁶-10⁹ galaxies
- Like CMB temperature

Power spectrum (galaxy pairs)

- Measures correlation power at different angular scales
- Bispectrum (galaxy triplets) even more information
 - Improved constraints
 - Info. on non-Gaussianities

Intrinsic Alignment of Galaxies

Intrinsic alignment of galaxies (IA)

- Large systematic effect in shear measurements
- Dark energy equation of state biased by up to 50% (Bridle & King 2007)
- Contaminates 2-pt weak lensing signal by up to 10% (Mandelbaum et al. 2007)
 - 3-pt weak lensing signal by up to 15-20% (Semboloni et al. 2008)
- Essential to remove for planned survey goals!

- II Only 'close' pairs
 - Positive correlation
 - Boosts signal
- GI All pairs
 - Negative correlation
 - Reduces signal

Intrinsic alignment of galaxies (IA)

Three 3 pt. correlations

- III Only 'close' triplets
- GII All triplets
- GGI All triplets

Mitigating intrinsic alignment

Redshift bin tomography

- Greatly reduce II corr.
- No impact on GI corr. (Refregier 2003)

Template/model fitting

• Dep. on choice of model (King 2005, Joachimi & Bridle 2010)

Nulling techniques

- Geometric nulling of IA
- Loss of statistical power (Joachimi & Schneider 2008,2009,2010)

Self-calibration techniques

- Combines tomography + nulling
- ...But works for GI and no power loss (Zhang 2010a, 2010b, MAT & Ishak 2012a, 2012b, 2012c)

Weak lensing surveys

Two primary observables

- Galaxy shape \rightarrow shear/convergence (G+I)
- Galaxy number \rightarrow galaxy surface density (g)
- Also photo-z (redshift or distance) and position on the sky
- Galaxies split into redshift bins
 - Cross-correlations between redshift bins (galaxies are spatially distant)
 - Auto-correlations within a single redshift bin (galaxies are spatially close)

Self-calibration of IA cross-correlations

- Pure IA correlations negligible
- Standard galaxy bias model
- Build relationship between lensing-IA and galaxy density-IA corr.
- Galaxy density-IA corr. isolated from galaxy shape-density corr.
- Can now isolate the IA contamination from the lensing signal

Self-calibration of IA auto-correlations

- Use distinct separation dependence of IA and shear signal
- Derive scaling relationships between IA-lensing and gal. density-lensing
- Isolate individual IA-lensing corr. from pure lensing signal
- More difficult in practice than previous self-calibration technique

Self-calibration of IA auto-correlations

- Requires measurement of shear bispectrum at 7 or more separations
- Conservative photo-z error + expected IA contamination (10-15%)
- Constraint of IA relationships possible
- Allows us to isolate individual IA and cosmic shear auto-correlations

Must correct for IA contamination in future surveys

• 10% or more bias in cosmological information

IA self-calibration techniques

- Reduction of IA contamination by up to factor of 10 in cross-correlations
 - 10+% bias in cosmological information becomes percent level
 - Errors introduced by self-calibration negligible
 - Little/no loss in lensing signal
- Recover IA correlations for use in other studies
 - Large scale structure formation
- Applicable in any weak lensing survey
 - DES, EUCLID, HSC, JWST, LSST, Pan-STARRS, WFIRST...

For more information: MAT & Ishak, MNRAS, 419, 1804 (2012)

MAT & Ishak, MNRAS, 423, 1663 (2012)

MAT & Ishak, MNRAS, 427, 442 (2012)

New Interpretations?

FLRW metric vs Szekeres metric

FLRW metric

- Exact sol'n of Einstein's eqs.
- Homogeneous & isotropic
- Uses linear perturbations to produce structure formation $\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} - 4\pi G\bar{\rho}\,\delta = 0$

Szekeres metric

- Exact sol'n of Einstein's field eqs.
- Inhomogeneous & anisotropic
- Can be expressed in form of *exact* non-linear perturbations
- \bullet Enhanced growth of structure compared to FLRW and ΛCDM
- FLRW is a natural limit to the Szekeres metric (class I)

$$\ddot{\delta} + 2\frac{\dot{a}}{a}\dot{\delta} - \frac{3M}{a^3}\delta - \frac{2}{1+\delta}\dot{\delta}^2 - \frac{3M}{a^3}\delta^2 = 0$$

Modeling exact structures (class I)

Void + super-cluster

- Exact Szekeres metric
- Structure evolution

Comparing to ΛCDM (class II)

Fitting Szekeres and ΛCDM to growth data

- Comparable fitting ability
- Different interpretation? (Peel, Ishak & MAT 2012)

		Without priors			With priors				
	$L\alpha?$	Ω_m^0	Ω^0_{Λ}	Ω_k^0	(χ^2)	Ω_m^0	Ω^0_{Λ}	Ω_k^0	(χ^2)
Szekeres	No	0.12	0.59	0.29	(0.22)	0.05	0.98	-0.03	(0.62)
	Yes	0.11	0.69	0.20	(0.39)	0.05	0.98	-0.03	(0.63)
$\Lambda \mathrm{CDM}$	No	0.29	0.56	0.15	(0.21)	0.27	0.73	0.00	(0.32)
	Yes	0.26	0.69	0.05	(0.39)	0.27	0.73	0.00	(0.43)

Cosmological constraints are becoming very precise

- Situation will still greatly improve over the next decade
 - Large lensing surveys will complement current CMB constrains
- Systematics a barrier: exciting opportunities
- Precision results will let us explore alternative interpretations

IA self-calibration techniques look to be very successful

• Could reduce a 10-20% systematic bias to the percent level

Szekeres models

- Fully general solution, can build exact physical structures
- Enhanced growth of structure compared to FLRW and ΛCDM
- Comparable fitting power to growth data
 - Szekeres and FLRW indicate possible different interpretations of that data
 - This is very preliminary work, though, and requires more study...

Cosmology, Relativity and Astrophysics group at UTD

- Professor Mustapha Ishak, Austin Peel (PhD student)
- www.utdallas.edu/~mishak/cosmogroup/

Support for research from

- NASA/TSGC Fellowship
- NSF AST-1109667,NASA NNX09AJ55G, and DOE DE-FG02-10ER41310 grants

Texas Symposium on Relativistic Astrophysics

- Dec. 8-13, 2013 in Dallas at the Fairmont Hotel
- nsm.utdallas.edu/texas2013/

For more information: MAT & Ishak, MNRAS, 419, 1804 (2012)

MAT & Ishak, MNRAS, 423, 1663 (2012)

MAT & Ishak, MNRAS, 427, 442 (2012)

Peel, Ishak & MAT, PRD, 86,123508 (2012)

Cosmic Evolution

Credit: Center for Cosmological Physics