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WHAT IS THE GOAL OF QUANTUM
COGNITION AND DECISION?

» Not a physical/neurobiological theory of the brain
* Not a theory of consciousness
* It Is 2 mathematical theory about human behavior

» Specifically judgments and decisions



ORGANIZATION OF THIS TALK

‘ . VWhy use quantum theory for cognition and decision?
2. Quantum vs classic probability theory.

3. Evidence for quantum probability theory.

4. Quantum versus Markov dynamics.

5. Fvidence for quantum dynamics

6. @ehcllsions



EVVHT USl
QUANTUM THEORY?



‘ . Quantum theory Is a general Axiomatic theory of probability
* Human judgments and decisions are probabllistic
* [hese probabilities do not obey the Kolmogorov axioms
e Quantum theory provides a viable alternative
2. Non Commutativity of measurements
e Measurements change psychological states producing context effects

* Principle of complementarity was borrowed by Niels Bohr from
William James

3 . Vector space representation of probabilities

e Agrees with connectionist-neural network models of cognition



EHOVW DO wWE USE
QUANTUM THEORY?



COMPARISON OF CLASSIC AND QUANTUM
PROBABILITY THEORIES

Kolmogorov Von Neumann




Classical Quantum

+ Each unique outcome s a » Each unique outcome Is an

member of a set of points orthonormal vector from a

called the Sample space set that spans a Vector space



Classical Quantum

+ Each unique outcome s a » Each unique outcome Is an

member of a set of points orthonormal vector from a
called the Sample space set that spans a Vector space
» Each event is a subset of the - Each event is a subspace of

sample space the vector space.



Classical

- Fach unigue outcome is a

member of a set of points

callec

the Sample space

* Fach event Is a subset of the

sample space

» State Is a probability function,

b, defined on subsets of the

samp

le space.

Quantum

» Each unique outcome Is an

orthonormal vectorikte R

set that spans a Vector space

» Fach event Is a subspace of

the vector space.

» State Is a unit length vector, §,

p(A)=|PS|[
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Classical Quantum

* Suppose event A Is observed * Suppose event A Is observed
(state reduction): (state reduction):
2
BNA P.P,S
p(Bl A)=2B0A) (Bl 4)= 1Bl

pA) ]



Classical

* Suppose event A Is observed
(state reduction):

p(BMNA)

Bl A)=
p(Bl1A) (A)

- Commutative Property
p(BNA)=p(ANB)

Quantum

* Suppose event A Is observed

(state reduction):

P,PS|[
2

IP.S||

p(BlA)=

* Non-Commutative

[P,PSIE =[PP



3.WHAI IS THE EMPIRICAL
=EVIDENCE?
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[versky & Kahneman
(1983, Psychological Review)

Busemeyer, Pothos, Franco, Irueblood
(201 |, Psychological Review)



Read the following information:

Linda was a philosophy major as a student at UC
Berkeley and she was an activist in social welfare
movements.

Rate the probability of the following events

Linda is a feminist (.83) Conjunction

Linda i1s a bank teller (.26)
Linda 1s a feminist and a bank teller (.36)
Linda I1s a feminist or a bank teller (.60)

Disjunction
Fallacy



LAW OF TOTAL PROBABILITY

p(B)=p(F)p(BIF)+ p(~ F)p(B I~ F)
> p(F)p(B|F)

CONJUNCTION - FALLACY
VIOLATES THIS LAW




Quantum Model Predictions

[P,SIF =[P, = 1Py P+ PS]]

=||P,P.S + P,P.S|[

=(|P,P.S|[ +||P,P.S|[ + Int
Int=(S'P'. P', P.S)+(S'P.P', P.S)

Int <—||P,P.S|[



DISJUNCTION FALLACY

Finding : p(F') 2 p(F or B)

p(F)=1-||P.s]|

p(ForB)=1- | |PFP§S| |2

Finding — HPFPES‘ ‘2 = ‘ ‘P FS‘ ‘2



INTERF

-NC

- OF CATEGORIZATION

ON DECISION

Psychological version of a double slit experiment

Busemeyer, Wang, Mogiliansky-Lambert
(2009, |. of Mathematical Psychology)



Participants shown pictures of faces

Categorize as "good” guy or “bad” guy
Decide to act “friendly’” or “aggressive”

Feedback on C

Categorization Decision
8 and D

1000-2000ms

Bad Guys  Good Guys



Two Conditions:

C-then-D: Categorize face first and then decide action

Feedback on C

. ’;* r- . n D e e n
{ i Categorizatio ecisio and D

‘ »{, Decision Feedback on D

>

D-alone: Decide without categorization




LAW OF TOTAL PROBABILITY

G =good guy, B=Bad guy, A=Attack

p(A)= p(G)p(AlG)+ p(B)p(AlB)

| |

D alone Condition C-then-D Condition




RESULTD

Face  p(G) p(AIG) p(B) pAB) TP P(A)

TR 05> | 006 | 052 F 05/ retiee

B 041 | 082 | 063 059




QUANTUM INTERFERENCE

p(AlD alone)zHPAS‘ ‘2 =HPA -I-S‘ ‘2
=P, -(B, + P,)-Slf

Interference term
violates of Law of Total

P
— PA'Pg'S_l'PA'PB'SH Probability

=||P,-P,-S|[ +||P, - P, - S|| + Int
Int=(S|P,P,P,P,1S)+(S|P,P,P,P.|S)

Finding — Int >0



VIOLATIONS OF
RATIONAL DECISION THEORY

Shafir & Tversky
QL PSychiologicaliSEcies)

Pothos & Busemeyer
(2009, Proceedings of Royal Society)



PRISONER DILEMMA GAM

SHAFIR & TVERSKY (1992, COGNITIVE PSYCH)

O: 10 O:5
P: 10 P: 25
O: 25 0O:20

Examined three conditions in a prisoner dilemma task

Known Coop: Player Is told other opponent will cooperate
Known Defect: Player is told other opponent will defect
UnKnown: Player is told nothing about the opponent




LAW OF TOTAL PROBABILITY

p(PD) = probability player defects

when opponent's move 1s unknown

p(PD)= p(OD)p(PD|10OD)+ p(OC)p(PD|10C)

Empirically we find : p(PD 10OD) = p(PD |1 OC)

— p(PD10OD) 2 p(PD) = p(PD10C)



DEFEC | RATE FOR TWO EXPERIMENSS

Study Known Defect Known Coop  Unknown
Shafir (1992) J 0.84 0.63
Matthew (2006) 0.9 1 0.84 0.66
Avg 0.94 0.84

0.65 h




QUANTUM INTERFERENCE

p(PD)=||P,, S|l =||P., - 1-S||

=[Py (P + Poc)- S]]

B P, S+Py Po S|

=||P., - By, - SI[ +||Pop - Py - SI[ + It

B (S|P, P P, ,, | S)+(S| PP P B



Al TITUD

QUESTION ORDER EFFECHS

Meeie
(2002, Public Opinion Quarterly)

Wang, Solloway, Shiffrin, & Busemeyer
(201 3, Proceedings National Academy of Science)



B A Gallup Poll question in 1997, N = 1002, “Yes”

* Doyougenerally * Do you generally
think Bill Clinton is @ think Al Gore is
honest and Yot honest and *
trustworthy? (50%) ‘l' trustworthy? (68%)‘L

* How about Al Gore? ™
. (60%)

« How about Bill
Clinton? (57%)




Observed proportions in the two question orders
C linton-Gon e White-Black

Ky T
Wy | 3987 | 0174

4899 0447

BI76eT | 2886 1612

Black-White

B Bn
4012
0597 4012

Test order effects:

v> (3)=10.14, v~ (3) = 73.04,
P =< 05 p<.001



Results: 72 Pew Surveys over 10 years

Quantile - Quantile Test of Repeat Choice Model
100 : . . , : :

O
90 | -

Chi=114.37,p=.000
70 | A

60 |- i
50 |- )
40 | H
30 1 = 2

20 O =

Observed Chi Square Deviation

Predicted Chi Square Deviation



QUANTUM MODEL PREDICTION

Assume: One question Tollowed immediately by another
with no Information In between

Pr[ A yes and then B no|= p(A, B,) =||P;P,S

Pr[ B no and then A yes]= p(B,A,)=||P,P;S$

Theorem : QQ equality
q={p(A,By)+ p(A,B,)}—{p(B,Ay)+ p(ByA,)}=0




Clinton-Gore White-Black

Test order effects:

v* (3)=10.14, v~ (3) = 73.04,
p<.05 p<.001

Test QQ equality:
g = -.003 9’ = -.02



Results: 72 Pew Surveys over 10 years

Quantile — Quantile Test of QQ Equality

o))
£

Chi Sq Test
Lack of Fit =

8.73

&~ O,

Observed Chi Square Deviation

0 1 2 3 4 5 6
Predicted Chi Sauare Deviation
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COMPARISON OF MARKOV AND
QUANTUM THEORIES

Markov Schrodinger




Markov

N = no. Markov states
p; = prob state 1
Prob[state 1] = p.
p=|p, 1= N X1 vector

Zpi=1

Quantum

N = no. eigen states

v = amplitude state 1
2

Prob|state 1] = ‘l// :
v =|y.]= N X1 vector

2‘%‘2 =



Markov

T = N x N matrix

I, = prob transit j to 1

Zsz = 1 (stochastic)

p(t)=T1(t)- p(0)

Observe state 1 at time t

(State reduction)
p(li)=10,0,.,1,.0]
pt+s)=T(s) p(tli)

Quantum

U = N X N matrix

U, = amp transit j to 1

U'U = I (unitary)
y(t)=U()y(0)

Observe state 1 at time t
(State Reduction)
v(tli)=10,0,..,1,.0]
W(t+s5)=U(s) (i)



Markov

Kolmogorov Eq

d
—T(O)=K-T(0)

Intensity Matrix
K =[k,]
kl.]. >0,1# ],

Bk =0
J

Quantum

Schrodinger Eq
d

iEU(t)zH-U(t)

Hamiltonian Matrix

H = H', Hermitian



RANDOM WALK MODELS
OF DECISION MAKING

Kvam, Pleskac, Busemeyer
(Proceedings of the National Academy of Science)



fehdeom Dot [Yotion laske

_ Decision Time ‘ Inter-judgment Time

TO 500 ms T1 50/ 750/ 1500 ms




/ state Random Walk Model of Confidence

(Toy example, actual model uses N=101 states)

O—Q—UQO—Q—C

<3 2 10 +1 +2 +3

Conﬂdent e Corjﬂdent
Signal Not Signal
Present Present
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Conag

e
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Markov
p(C(t,)=kl|Cond2)= p(C(t,)= k| Condl)
Quantum

p(C(t,)=klCond2)# p(C(t,)= k| Condl)

CRITICAL TEST OF MODELS

\%
\%

easure confidence only at &
easure choice at t| and confidence at t

Statistically test distribution differences using

Kolmogorov- smirnov Statistic



Markov Random Walk
A

Initial State (t,)

Both models start with an mibal

state centered at 50, indicating

uncertainty aboul the dol motion
4 direction

m

P({Confidence = x)

Dynamics (t, - t.)

Oynamics are applied to move e
stale 1o Rs position at f,. Each model
uses drift (8), which moves the siate
toward the true state of the world, and

diffusion (o ), which moves il out over
the states ndiscriminately

P(Confidence = x)

Choice (t,, when
prompted)
AL L in the choice condition,
responses are delermined by the
state. Confidence levels below 50

result in Incorrect answers, while
1 thoee above 50 result in cormect ones.

i
1
|
1
|
1
|
1
|

P{Confidence = x)

X Dynamics (¢, - t)) |

e Dynamics are apphed again %o | w—Corract |

g |l move the state from its position at || ==Incorrect|

g f, to its positon at . The same

3 arift and diffusion parameters are

o used. Final distributions for the

a chaice condition are shown
0 25 &0 75 100

' I— Choice Confidence at t, [ Choice RN

§ feess No-choice The state at f, is cetermined, and [ ***+ No-choice | il e
! we show the predicted distribulions

€ ! of confidence responses for the

é . choica and no-choice conditions.

o

100 0 235 S0 75 100
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Table 1. Summary of model comparison and statistical effects.

Participant Interference® Second-Stage Processing! Log Bayes Factor
1 -0.18 [-0.26, -0.11:1 0.12 _'0 08, 0.18]* 212
2 -0.15 [-0.23, -0.07:1’ 0.08 [0.03, O. 14]¢ 41
3 -0.15 [-0.22, -0.07:1' 0.01 [-0. 04 0. 06] -131
4 -0.14 [-0.23, -0.07:1 0.10 ‘0 04, 0.15]% 190
5 -0.11 -0 19, -0. 04 i 0.07 _'0.02, 0.13‘ic 837
6 -0.08 —0 16, -0.01|* 0.13 [0.07, 0.18:i 223
7 -0.07 [-0.15, 0.01 -0.01 [-0.07, 0.05] -148
8 -0.05 _-O 14, 0. 02‘ 0.04 :;0.08, 0.10: 339
9 -0.01 ;-0.09, 0.07] -0.02 :—0.06, 0.04: 150

Group Level -0.11 [-0.18, -0.04[} 0.06 [0.01, 0.12]¢ 1713

*The mean posterior coefficient and 95% HDI for the main effect of the choice / click manipulation on half-scale
confidence

TThe mean posterior coefficient and 95% HDI for the interaction between dot coherence and second stage processing
time on full-scale confidence.

o959, highest density interval for the estimate of the corresponding parameter excluded zero.



CONCLUSIONS

» Quantum theory provides an alternative framework for

developing probabilistic and dynamic models of decision
making

* Provides a coherent account for puzzling violations of law of
total probability found in a variety of decision making studies

* Forms a new foundation for understanding widely different
bhenomena Iin decision making using a common set of
axiomatic principles




“Mathematical models of cognition so
often seem like mere formal exercises.
Quantum theory is a rare exception.
Without sacrificing formal rigor, it captures
deep insights about the workings of the
mind with elegant simplicity. This book
promises to revolutionize the way we think
about thinking.”

Steven Sloman
Cognitive, Linguistic, and Psychological
Sciences, Brown University

“This book is about why and how formal
structures of quantum theory are
essential for psychology - a breakthrough
resolving long-standing problems

and suggesting novel routes for future
research, convincingly presented by two
main experts in the field.”

Harald Atmanspacher

Department of Theory and Data Analysis,
Institut fuer Grenzgebiete der Psychologie
und Psychohygiene e.V.

<FURTHER ENDORSEMENT TO
FOLLOW>
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Much of our understanding of human
thinking is based on probabilistic models.
This innovative book by Jerome R. Busemeyer
and Peter D. Bruza argues that, actually,
the underlying mathematical structures
from quantum theory provide a much better
account of human thinking than traditional
models. They introduce the foundations

for modeling probabilistic-dynamic
systems using two aspects of quantum
theory. The first, “contextuality,” is a way to
understand interference effects found with
inferences and decisions under conditions
of uncertainty. The second, “quantum
entanglement,” allows cognitive phenomena
to be modeled in non-reductionist way.
Employing these principles drawn from
quantum theory allows us to view human
cognition and decision in a totally new light.
Introducing the basic principles in an easy-
to-follow way, this book does not assume

a physics background or a quantum brain
and comes complete with a tutorial and fully
worked-out applications in important areas
of cognition and decision.

Jerome R. Busemeyer is a Professor in

the Department of Psychological and Brain
Sciences at Indiana University, Bloomington,
USA.

Peter D. Bruza is a Professor in the Faculty
of Science and Technology at Queensland
University of Technology, Brisbane, Australia.
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