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• Not a physical/neurobiological theory of the brain

• Not a theory of consciousness

• It is a mathematical theory about human behavior

• Specifically judgments and decisions

WHAT IS THE GOAL OF QUANTUM 
COGNITION  AND  DECISION? 



1. Why use quantum theory for cognition and decision? 

2. Quantum vs classic probability theory.

3. Evidence for quantum probability theory.

4. Quantum versus Markov dynamics.

5. Evidence for quantum dynamics

6. Conclusions

ORGANIZATION OF THIS TALK



1. WHY USE  
QUANTUM  THEORY?



1. Quantum theory is a general Axiomatic theory of probability

•Human judgments and decisions are probabilistic

•These probabilities do not obey the Kolmogorov axioms

•Quantum theory provides a viable alternative

2. Non Commutativity of measurements

•Measurements change psychological states producing context effects

•Principle of complementarity was borrowed by Niels Bohr from 
William James

3. Vector space representation of probabilities

•Agrees with connectionist-neural network models of cognition



2. HOW  DO  WE USE  
QUANTUM  THEORY?



COMPARISON OF CLASSIC AND QUANTUM 
PROBABILITY  THEORIES

Kolmogorov Von Neumann



  Classical
• Each unique outcome is a 

member of a set of points 
called the Sample space 

Quantum
• Each unique outcome is an 

orthonormal vector from a 
set that spans a Vector space
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• Each unique outcome is a 

member of a set of points 
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• Each event is a subset of the 
sample space

Quantum
• Each unique outcome is an 
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• Each event is a subspace of 
the vector space. 



Classical
• Each unique outcome is a 

member of a set of points 
called the Sample space 

• Each event is a subset of the 
sample space

• State is a probability function, 
p, defined on subsets of the 
sample space.

Quantum
• Each unique outcome is an 

orthonormal vector from a 
set that spans a Vector space

• Each event is a subspace of 
the vector space. 

• State is a unit length vector, S,    

p(A) = PAS
2





Classical
• Suppose event A is observed 

(state reduction): 

Quantum
• Suppose event A is observed 

(state reduction): 

p(B | A) = p(B∩ A)
p(A)

p(B | A) =
PBPAS

2

PAS
2



Classical
• Suppose event A is observed 

(state reduction): 

• Commutative Property 

Quantum
• Suppose event A is observed 

(state reduction): 

• Non-Commutative

p(B | A) = p(B∩ A)
p(A)

p(B | A) =
PBPAS

2

PAS
2

p(B∩ A) = p(A∩ B) PBPAS
2 ≠ PAPBS

2



3. WHAT IS THE EMPIRICAL 
EVIDENCE?



CONJUNCTION -DISJUNCTION  
PROBABILITY JUDGMENT ERRORS 

Tversky & Kahneman
(1983, Psychological Review)

Busemeyer, Pothos, Franco, Trueblood
(2011, Psychological Review)



Linda was a philosophy major as a student at UC 
Berkeley and she was an activist in social welfare 
movements. 

Linda is a feminist (.83)
Linda is a bank teller (.26)
Linda is a feminist and a bank teller (.36)
Linda is a feminist or a bank teller (.60)

Conjunction 
Fallacy Disjunction 

Fallacy

Read the following information:

Rate the probability of the following events 

Linda is a feminist
Linda is a bank teller
Linda is a feminist and a bank teller
Linda is a feminist or a bank teller



LAW  OF   TOTAL  PROBABILITY 

p(B) = p(F)p(B | F)+ p(~ F)p(B |~ F)
≥ p(F)p(B | F)

CONJUNCTION - FALLACY  
VIOLATES THIS LAW



PBS
2 = PBIS

2 = PB(PF + PF )S
2

= PBPFS + PBPFS
2

= PBPFS
2 + PBPFS

2
+ Int

Int = S 'P 'F P 'B PFS + S 'PFP 'B PFS

Quantum Model Predictions

Int < − PBPFS
2



DISJUNCTION FALLACY

p(F) = 1− PFS
2

p(F  or B) = 1− PFPBS
2

Finding :  p(F) ≥ p(F  or B)

Finding→  PFPBS
2
≥ PFS

2



INTERFERENCE OF CATEGORIZATION  
ON DECISION

Busemeyer, Wang, Mogiliansky-Lambert 
(2009, J. of Mathematical Psychology)

Psychological version of a double slit experiment



!
Categoriza*on,

!

1000/2000ms, 1000ms, 10s,

!
Decision,

!

10s,

Feedback,on,C,
and,D,

10s,

Participants shown pictures of faces

Categorize as “good” guy or “bad” guy
Decide to act “friendly” or “aggressive”

Bad Guys Good Guys



!
Categoriza*on,

!

1000/2000ms, 1000ms, 10s,

!
Decision,

!

10s,

Feedback,on,C,
and,D,

10s,

1000/2000ms, 1000ms, 10s,

!
Decision,

!

10s,

Feedback,on,D,

C-then-D: Categorize face first and then decide action 

D-alone: Decide without categorization 

Two Conditions:



LAW OF TOTAL PROBABILITY

p(A) = p(G)p(A |G)+ p(B)p(A | B)

D alone Condition C-then-D Condition

G =good guy,   B=Bad guy,    A=Attack



Face p(G) p(A|G) p(B) p(A|B) TP P(A)

Good 0.84 0.35 0.16 0.52 0.37 0.39

Bad 0.17 0.41 0.82 0.63 0.59 0.69

RESULTS  



QUANTUM INTERFERENCE

p(A |D alone) = PAS
2 = PA ⋅ I ⋅S

2

= PA ⋅ PG + PB( ) ⋅S 2

= PA ⋅PG ⋅S + PA ⋅PB ⋅S
2

= PA ⋅PG ⋅S
2 + PA ⋅PB ⋅S

2 + Int

Int = S | PGPAPAPB | S + S | PBPAPAPG | S

Interference term 
violates of Law of Total 

Probability

Finding→ Int > 0



VIOLATIONS OF  
RATIONAL DECISION THEORY

Shafir & Tversky
(1992, Psychological Science)

Pothos & Busemeyer 
(2009, Proceedings of Royal Society) 



PRISONER DILEMMA GAME  
SHAFIR & TVERSKY (1992, COGNITIVE PSYCH) 

Examined three conditions in a prisoner dilemma task 

Known Coop:    Player is told other opponent will cooperate
Known Defect:  Player is told other opponent will defect
UnKnown:         Player is told nothing about the opponent

OD OC

PD O: 10
P: 10

O:5
P: 25

PC O: 25
P: 5

O:20
P: 20



LAW OF TOTAL PROBABILITY

p(PD) =  probability player defects 
when opponent's move is unknown

p(PD) = p(OD)p(PD |OD)+ p(OC)p(PD |OC)

Empirically we find : p(PD |OD) ≥ p(PD |OC)

→ p(PD |OD) ≥ p(PD) ≥ p(PD |OC)



DEFECT RATE FOR TWO EXPERIMENTS 

Study Known Defect Known Coop Unknown

Shafir (1992) 0.97 0.84 0.63

Matthew (2006) 0.91 0.84 0.66

Avg 0.94 0.84 0.65



QUANTUM INTERFERENCE

p(PD) = PPDS
2 = PPD ⋅ I ⋅S

2

= PPD ⋅ POD + POC( ) ⋅S 2

= PPD ⋅POD ⋅S + PPD ⋅POC ⋅S
2

= PPD ⋅POD ⋅S
2 + PPD ⋅POC ⋅S

2 + Int

Int = S | POCPPDPPDPOD | S + S | PODPPDPPDPOC | S



ATTITUDE QUESTION ORDER EFFECTS

Moore
(2002, Public Opinion Quarterly)

Wang, Solloway, Shiffrin, & Busemeyer 
(2013, Proceedings National Academy of Science) 



•  Do#you#generally#
think#Bill#Clinton#is#
honest#and#
trustworthy?#(50%)&

•  How#about#Al#Gore?#
•  (60%)&

•  Do#you#generally#
think#Al#Gore#is#
honest#and#
trustworthy?#(68%)&

•  How#about#Bill#
Clinton?#(57%)&

! A#Gallup#Poll#ques=on#in#1997,#N#=#1002,#“Yes”&

Thanks!#
Oops.#Sorry.#

Ques1on&Order&Effects:&Assimila1on&





Results: 72 Pew Surveys over 10 years



QUANTUM MODEL PREDICTION

Pr[A yes and then B no]= p(AY BN ) = PBPAS
2

Pr[B no and then A yes]= p(BNAY ) = PAPBS
2

Theorem :  QQ equality
q = {p(AY BN )+ p(ANBY )}− {p(BY AN )+ p(BNAY )} = 0

Assume: One question followed immediately by another 
with no information in between





Results: 72 Pew Surveys over 10 years



4. DYNAMICS



COMPARISON OF MARKOV AND 
QUANTUM  THEORIES

Markov Schrödinger



N =  no. Markov states
pi = prob state i
Prob[state i]= pi
p = [pi ]= N ×1 vector

pi = 1
i
∑

Markov
N =  no. eigen states
ψ i = amplitude state i

Prob[state i]= ψ i
2

ψ = [ψ i ]= N ×1 vector

ψ i
2 = 1

i
∑

Quantum



T = N × N  matrix
Tij = prob transit j to i

Tij = 1 (stochastic)
i
∑
p(t) = T (t) ⋅ p(0)

Observe state i at time t
(State reduction)
p(t | i) = [0,0,..,1,..0]'
p(t + s) = T (s) ⋅ p(t | i)

Markov

U = N × N  matrix
Uij = amp transit j to i

U †U = I  (unitary)
ψ (t) =U(t) ⋅ψ (0)

Observe state i at time t
(State Reduction)
ψ (t | i) = [0,0,..,1,..0]'
ψ (t + s) =U(s) ⋅ψ (t | i)

Quantum



Kolmogorov Eq
d
dt
T (t) = K ⋅T (t)

Intensity Matrix
K = [kij ]
kij > 0,i ≠ j,  

kij = 0
j
∑

Markov
Schrödinger Eq

i d
dt
U(t) = H ⋅U(t)

Hamiltonian Matrix
H = H †,  Hermitian

Quantum



RANDOM WALK MODELS 
 OF DECISION MAKING

Kvam, Pleskac, Busemeyer 
(Proceedings of the National Academy of Science)



T1# T2#T0# 500#ms# 50#/#750#/#1500#ms#

Random Dot Motion Task



N=7 state Random Walk Model of Confidence
(Toy example, actual model uses N=101 states)

Confident 
Signal Not 
Present

Confident 
Signal 

Present

Uncertain



CRITICAL TEST OF MODELS

Condition 1: Measure confidence only at t2 
Condition 2: Measure choice at t1 and confidence at t2

Markov
p(C(t2 ) = k |Cond2) = p(C(t2 ) = k |Cond1)
Quantum
p(C(t2 ) = k |Cond2) ≠ p(C(t2 ) = k |Cond1)

Statistically test distribution differences using 
Kolmogorov- Smirnov Statistic









CONCLUSIONS

• Quantum theory provides an alternative framework for 
developing probabilistic and dynamic models of decision 
making

• Provides a coherent account for puzzling violations of law of 
total probability found in a variety of decision making studies

• Forms a new foundation for understanding widely different 
phenomena in decision making using a common set of 
axiomatic principles
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“Mathematical models of cognition so 
often seem like mere formal exercises. 
Quantum theory is a rare exception. 
Without sacrificing formal rigor, it captures 
deep insights about the workings of the 
mind with elegant simplicity.  This book 
promises to revolutionize the way we think 
about thinking.”

Steven Sloman
Cognitive, Linguistic, and Psychological 
Sciences, Brown University

“This book is about why and how formal 
structures of quantum theory are 
essential for psychology - a breakthrough 
resolving long-standing problems 
and suggesting novel routes for future 
research, convincingly presented by two 
main experts in the field.”

Harald Atmanspacher
Department of Theory and Data Analysis, 
Institut fuer Grenzgebiete der Psychologie 
und Psychohygiene e.V.

<FURTHER ENDORSEMENT TO 
FOLLOW>

Much of our understanding of human  
thinking is based on probabilistic models. 
This innovative book by Jerome R. Busemeyer 
and Peter D. Bruza argues that, actually, 
the underlying mathematical structures 
from quantum theory provide a much better 
account of human thinking than traditional 
models. They introduce the foundations 
for modeling probabilistic-dynamic 
systems using two aspects of quantum 
theory. The first, “contextuality,” is a way to 
understand interference effects found with 
inferences and decisions under conditions 
of uncertainty. The second, “quantum 
entanglement,” allows cognitive phenomena 
to be modeled in non-reductionist way. 
Employing these principles drawn from 
quantum theory allows us to view human 
cognition and decision in a totally new light. 
Introducing the basic principles in an easy-
to-follow way, this book does not assume 
a physics background or a quantum brain 
and comes complete with a tutorial and fully 
worked-out applications in important areas  
of cognition and decision.

Jerome R. Busemeyer is a Professor in 
the Department of Psychological and Brain 
Sciences at Indiana University, Bloomington, 
USA. 

Peter D. Bruza is a Professor in the Faculty 
of Science and Technology at Queensland 
University of Technology, Brisbane, Australia.
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