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The problem of fitting ellipsoids occurs in many areas of science. It is useful in pattern recognition,
particle physics, computer graphics, medical imaging of organs, and statistical error analysis. We
describe an algorithm for finding an equation for a multi-dimensional ellipsoid fit to a distribution
of discrete data points. In general, we find that the algorithm works well for fitting ellipsoids with
a known center, and that additional work is needed when the center of the ellipsoid is unknown.

I. INTRODUCTION

The approach to ellipsoidal fitting used in this write-up, based primarily on the algorithms described in [1] and
[2], was motivated by the application of ellipsoidal fitting to error analysis. In particular, it could be used in
the analysis of parton distribution functions, along the lines of the analysis described in [3]. Since the emphasis
here is not on 3D visualization, to the author’s knowledge, this is the first implementation of d-dimensional
ellipsoid fitting for an arbitrarily large number of dimensions.

This implementation of ellipsoid fitting reconstructs the d-dimensional ellipsoid from its two-dimensional ellipse
projections. As shown in [1] and [2], ellipsoid fitting can be expressed simply and concisely in terms of linear
algebra. This will be explained in detail in sections II, III, IV, and V. Section VI contains a brief overview of
the Fortran 77 version of the ellipsoid fitting code, Section VII covers its usage in Fortran. and its performance
is assessed in section VIII.

II. MATHEMATICAL REPRESENTATION OF AN ELLIPSOID

A d-dimensional ellipsoid is a d-dimensional surface–the extension of a two-dimensional ellipse. It can be
thought of as an affine map (linear transformation plus a translation) of a d-dimensional sphere. Hence, as a
set of points, an ellipsoid can be most generally expressed in terms of the following set:

{Ax + b : x ∈ S1(0)} , (1)

where A is a d x d matrix, b is a d-dimensional translation vector, and S1(0) is the surface of a unit ball
centered at the origin in d Euclidean dimensions:

S1(0) =
{
y ∈ <d : ||y|| = yT y = 1

}
. (2)

Note that b defines the center of the ellipsoid. Using the change of variables, z = Ax + b, in (1), we find that
an ellipsoid can be represented by a set of points

{z : (z− b)T C(z− b) = 1, z ∈ <d} , (3)

where C = (AAT )−1, and C is both symmetric and positive definite (for a non-degenerate d-dimensional
ellipsoid in d dimensions). A degenerate d̄-dimensional ellipsoid in d-dimensions (with d̄ < d) would have C as
a positive semi-definite (PSD) matrix.

Since C is symmetric, we can rewrite (3) as
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{z : zT C̄z + b̄T z = 1, z ∈ <d} , (4)

where

C̄ =
C

1 − bT Cb
and b̄T =

−2bT C
1 − bT Cb

. (5)

Note that the term linear in z disappears for an ellipsoid centered at the origin. The equality sign in (3)
emphasizes that we are only dealing with the surface of an ellipsoid. If it were replaced by a less than or equal
to sign, we would have the equation for a filled ellipsoid.

Further, we know that a centered ellipsoid aligned with the coordinate axes obeys the formula

d∑
i=1

z2
i

R2
i

= 1 , (6)

where Ri are the semi-axis lengths of the ellipsoid. By analogy to this, we can see that the eigenvectors of C̄
are the axes of the ellipsoid and if ci are the eigenvalues of C̄, then the semi-axis lengths of the ellipsoid are
given by 1/

√
ci.

III. TWO-DIMENSIONAL ELLIPSE FITTING

Our goal is to take two-dimensional projections of data points on a d-dimensional ellipsoid and then
to reconstruct the full ellipsoid using the projections, we need a method to find the elliptic bound-
ary of the projected points. The boundary of a set of data points can be found by using well-
established convex hull algorithms, such as the one in [4] or those in the FastGEO library (available at
http://www.partow.net/projects/fastgeo/index.html).

Once the boundary is found, it can be fit to a two-dimensional ellipse. The algorithm we use is the least squares
minimization method described by Fitzgibbon et al. in [1]. They start by defining the “algebraic distance” of
a point (x, y) to the surface of a general conic by

F (a,x) = a · x = ax2 + bxy + cy2 + dx + ey + f , (7)

where a = (a b c d e f)T , and x = (x2 xy y2 x y 1)T . The conic is defined by F (a,x) = 0, and so a conic may
be fit to a set of points through a least squares minimization of algebraic distances.

In order to ensure that the best fit conic found is an ellipse, one only has to impose the constraint that
b2 − 4ac < 0. This can be done by noticing that (7) allows for arbitrary rescaling of all the coefficients. Hence
one can instead impose the constraint 4ac − b2 = 1, which can be expressed as aT Ca = 1, where

C =


0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (8)

Introducing a matrix D defined by D = (x1 x2 . . . xN ), where N is the total number of points, the problem
becomes an optimization problem of minimizing

∑N
i=1 F (a,xi)2 = ||Da||2, subject to the constraint aT Ca = 1.
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This can be solved using a Lagrange multiplier approach. Thus introducing a Lagrange multiplier, λ, we need
to minimize the quantity

||Da||2 − λaT Ca. (9)

Differentiating (9) with respect to a, we see that we just need to find the vector a that satisfies

{
Sa = λCa ,
aT Ca = 1 ,

(10)

where S = DT D. The equation for the solution ellipse is then given by F (a,x) = 0 (where x is not a point
on the ellipse, but is simply the coordinate vector given below (7)). The solution a is one of six generalized
eigenvectors obtained from solving the first equation in (10). In [1], Fitzgibbon et al. further show that of the
six eigenvectors, only one will be associated with a positive eigenvalue, and that this eigenvector is the desired
solution.

However it is important to notice that when all of the N data points lie on the ellipse, Sa = 0 and so the
solution a is associated with a zero eigenvalue and not a positive eigenvalue. In fact, as pointed out in [5], due
to numerical error, it is possible that the eigenvalue that labels the solution eigenvector is even a small negative
number. Appropriate numerical precautions should be taken.

One can handle this situation by separating it into three cases: #1 rank(S) = 6, #2 rank(S) = 5, and #3
rank(S) < 5. (Of course here the equality and inequality symbols are not strict and are used loosely to mean
‘within numerical error.’) The first case is the ideal one in which one may simply find the generalized eigenvalues
of (10) and pick the eigenvector associated with the positive eigenvalue.

In the second case, either only five points were given, or all input points lie on the ellipse, and numerical
rounding may make it difficult to choose the correct eigenvector every time. Since S is symmetric, one can
instead calculate the singular value decompostion (SVD) of S, S = OT ΣO where O is orthogonal and Σ is a
diagonal matrix with the singular values of S along its diagonal. Since rank(S) = 5, one of the diagonal entries
of Σ is zero–without loss of generality, say that Σ66 = 0. Also since

OSa = OSOT Oa = ΣOa ≡ Σu = 0 , (11)

u = (0 0 0 0 0 u6)T , and u6 may be found explicitly from aT Ca = 1. Also,

a = OT Oa = OT u , (12)

and the solution vector, a, can be taken to as equal to the sixth column of OT (since the solution may be
arbitrarily scaled). This method is preferred since finding the SVD of S is both computationally less expensive
and less ambiguous than finding the eigenvalues and eigenvectors of S.

The third case of rank(S) < 5 occurs either when too few points have been specified or when the data points
are arranged in such a way that numerically, rank((S)) < 5. In this case there is no unique solution to (10).
Note that at least five points are needed to uniquely determine a two-dimensional ellipse. In general, (4) shows
that for an ellipsoid in d dimensions, d(d + 3)/2 points are needed to uniquely determine the ellipsoid.

IV. FITTING A MULTI-DIMENSIONAL ELLIPSOID WITH A KNOWN CENTER

For this part, the algorithm is the one developed by Karl in [2]. The goal of Karl’s algorithm is to fit a d-
dimensional ellipsoid to d-dimensional data points using lower dimensional projections of the ellipsoid, provided
that the center is known. If the center of the ellipsoid is known, it is easy to translate the ellipsoid to the origin
where the math is cleaner, so all calculations are carried out as though the ellipsoid were centered at the origin.
In this case, the ellipsoid can be completely represented by a symmetric, PSD matrix.
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The setup of the problem is as follows. Let X be a d x d symmetric, PSD matrix representing the d-dimensional
ellipsoid and let P be a d x m non-degenerate projection matrix whose m columns form an orthonormal basis
for an m-dimensional subspace of the d-dimensional space. The m x m symmetric, PSD matrix, Y, representing
the m-dimensional projection of the ellipsoid is then given by

Y = PT XP. (13)

Hence there is a nice, linear relationship between the PSD representation of the d-dimensional ellipsoid, X, and
its m-dimensional projection, Y. Even so, Karl introduces a more convenient and non-redundant way to express
this relationship, exploiting the symmetry of the X and Y matrices. Karl introduces a symmetric matrix inner
product space, in which d-dimensional symmetric matrices are represented by a d(d+1)/2-dimensional vectors,
and the inner product between two symmetric matrices A and B is given by 〈A,B〉 = tr(AT B).

Let x and y be the symmetric space vector representations of the ellipsoids in terms of the symmetric matrices
X and Y in the orthonormal bases M(d)

j and M(m)
i . Then (13) is expressed simply as

y = P̃x , (14)

where the components of x, y, and P̃ are given by

xj = 〈X,M(d)
j 〉

yi = 〈Y,M(m)
i 〉

P̃ij = 〈M(m)
i ,PT M(d)

j P〉
(15)

A simple form to use for the orthonormal basis is the set of matrices which contain all zeros except for either
a 1 in a single location along the diagonal or a 1/

√
2 in two locations, symmetric about the diagonal (e.g.

M(d)
kl = M(d)

lk = 1/
√

2 for 1 < l, k < d and l 6= k).

If there are q ellipsoid projections, then the solution vector x is obtained by stacking individual projection
equations as in (14) and solving them simultaneously:


y1

y2
...

yq

 =


P̃1

P̃2

...
P̃q

 x.
(16)

For simplicity we rewrite this as

ystack = P̃stackx. (17)

A unique solution for x exists if and only if the matrix P̃stack has full column rank. In this case, the solution
is given by

x = P̃
+

stackystack =
[(

P̃
T

stackP̃stack

)−1

P̃
T

stack

]
ystack , (18)

where P̃
+

stack is the full column rank Moore-Penrose inverse of P̃stack. The Moore-Penrose inverse is a pseu-
doinverse which provides the least squares solution to an over- or under-determined problem.

Note that the final solution for x does not necessarily represent a PSD matrix. Hence the final solution is
not guarenteed to be an ellipsoid, and additional constraints must be employed to attain this. Karl suggests
methods for adding a PSD constraint to the final solution in [2]. An analytical form for computing the nearest
(in the Frobenius norm) symmetric PSD matrix to an arbitrary real matrix is also given in [6].
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V. FINDING THE CENTER OF A D-DIMENSIONAL ELLIPSOID

The center of a d-dimensional ellipsoid may be found in a manner along the lines of that introduced in the
previous section. Recalling the equation given for an ellipsoid with an arbitrary center given by (4), consider
the equivalent stacked matrix equation

(
z
√

z

)T (
C̄ 0
0 Diag[b̄]

)(
z
√

z

)
= 1 , (19)

where extra minus signs obscured by taking the square root have been absorbed into Diag[b̄]. Finding C̄ and
b̄ is then possible by using an additionally stacked version of the algorithm described in the previous section.

Let c denote the vector describing the center of the d-dimensional ellipsoid. The center of the ellipsoid can
then be obtained from C̄ and b̄ by solving the following matrix equation:

c = (−2C̄)−1b̄. (20)

VI. THE CODE

The code, written to fit a d-dimensional ellipsoid to d-dimensional data points, takes two-dimensional pro-
jections of the data, fits ellipses to the two-dimensional projections using the method given in Section III,
and reconstructs the d-dimensional ellipsoid from the two-dimensional projections using the method given in
Section IV.

In particular, all possible two-dimensional projections of the ellipsoid onto planes defined by two of the coordi-
nate axes are used. All d(d− 1)/2 projections are needed to ensure that P̃ has full column rank. Additionally,
when using these projections, the calculation of the P̃i is simplified to the point where they can be reduced to
a few if-then statements rather than having the code create the bases and do all of the matrix multiplications.

VII. USAGE IN FORTRAN

The ellipsoid fitting program uses the LAPACK (with BLAS) linear algebra library (available at
http://www.netlib.org/lapack/) which needs to be installed in order for it to work. The program can be
called as a Fortran subroutine:

subroutine Ellipsoid fit(inputdata, ndim, maxpoints, needcenter, printinfo,
FinalMatrix, eigenvecs, eigenvals, center).

Input parameters:

• inputdata is a double precision array; inputdata(ndim, maxpoints). It contains all (maxpoints) of the
ndim-dimensional points. The first index (or row) of the array inputdata labels the axis, i.e. the ith

coordinate of the ndim-dimensional point.

• ndim is an integer parameter which specifies the number of dimensions of the to-be-reconstructed ellipsoid.

• maxpoints is an integer parameter which is equal to the number of data points inputted.

• needcenter is an integer.

– needcenter = 0 forces the ellipse to have a center at the origin, and

– needcenter = 1 tells the subroutine to find the center of the ellipse.

• printinfo is an integer.
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– printinfo = 0 prints nothing, and

– printinfo = 1 prints out the singular values and rank of the matrix S, which is used to fit the two-
dimensional ellipse projections. It also prints out the least squares error in each two-dimensional
fit.

– printinfo = 2 prints everything that printinfo = 1 prints. It also prints out the ellipse axes and the
corresponding axis lengths.

Output parameters:

• FinalMatrix is a double precision array; FinalMatrix (ndim, ndim) which contains the positive semi-
definite (PSD) matrix representation of the centered ellipse.

• eigenvecs is a double precision array; eigenves(ndim, ndim) which contains the ndim-dimensional axes
of the reconstructed ellipse side by side in its columns (second index). These are the eigenvectors of
FinalMatrix.

• eigenvals is a double precision array; eigenvals(ndim) which contains the ndim axis lengths of the ellipse.
They are listed in the same order as the axes of the ellipse in the columns of eigenvecs. These are the
eigenvectors of FinalMatrix.

• center is a double precision array; center(ndim) which is a vector representing the center of the ellipse.

VIII. CODE PERFORMANCE

The code is fast and in general, it performs well. Several examples are shown below in Fig. 1.

FIG. 1: (a) shows a two-dimensional ellipse fit to slightly noisy elliptic data, (b) shows a two-dimensional ellipse fit to
noisy linear data, and (c) shows a two-dimensional projection of a three-dimensional ellipsoid fit to noisy data. The
ellipse in (c) does not look like the best fit ellipse since it is just a projection of a best fit ellipsoid and in this case, the
ellipsoid fit was forced to be centered at the origin.

There are some caveats to this approach. The method of finding the center of the ellipsoid is unstable and
does not work very well with noisy input data points. Additionally, though the code guarantees that for each
two-dimensional projection, the data will be fit to an ellipse, there is (currently) no positive semi-definite (PSD)
constraint on the final matrix representing the d-dimensional ellipsoid, hence the final solution is not guaranteed
to be an ellipsoid. Yet using simulated data with a known center, a final ellipsoid is almost always obtained.
See [2] for a quantitative description of the amount of noise in the input data which will still guarantee a
solution which is PSD. Adding a final PSD constraint and improving the method of finding the equation of a
non-centered, d-dimensional ellipsoid are two paths for further work on this program.
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